Suppr超能文献

微分同胚主动轮廓

DIFFEOMORPHIC ACTIVE CONTOURS.

作者信息

Arrate Felipe, Ratnanather J Tilak, Younes Laurent

机构信息

Department Applied Mathematics and Statistics, Center of Imaging Science, Johns Hopkins University, 307-B Clark Hall, 3400 N-Charles Street, Baltimore, MD 21218, USA, (

出版信息

SIAM J Imaging Sci. 2010 Apr 30;3(2):176-198. doi: 10.1137/090766401.

Abstract

In this study we present a geometric flow approach to the segmentation of three-dimensional medical images obtained from magnetic resonance imaging (MRI) or computed tomography (CT) scan methods, by minimizing a cost function. This energy term is based on the intensity of the original image and its minimum is found following a gradient descent curve in an infinite-dimensional space of diffeomorphisms (Diff) to preserve topology. The general framework is reminiscent of variational shape optimization methods, but remains closer to general developments on deformable template theory of geometric flows. In our case, the metric that provides the gradient is defined as a right invariant inner product on the tangent space (𝒱) at the identity of the group of diffeomorphisms, following the general Lie group approach suggested by Arnold [2]. To avoid local solutions of the optimization problem and to mitigate the influence of several sources of noise, a finite set of control points is defined on the boundary of the template binary images, yielding a projected gradient descent on Diff.

摘要

在本研究中,我们提出了一种几何流方法,通过最小化一个代价函数来分割从磁共振成像(MRI)或计算机断层扫描(CT)扫描方法获得的三维医学图像。这个能量项基于原始图像的强度,并且通过在无穷维微分同胚空间(Diff)中沿着梯度下降曲线找到其最小值,以保持拓扑结构。该通用框架让人联想到变分形状优化方法,但更接近于几何流的可变形模板理论的一般发展。在我们的案例中,提供梯度的度量被定义为在微分同胚群单位元处的切空间(𝒱)上的右不变内积,这遵循了阿诺德[2]提出的一般李群方法。为了避免优化问题的局部解并减轻多种噪声源的影响,在模板二值图像的边界上定义了一组有限的控制点,从而在Diff上产生投影梯度下降。

相似文献

1
DIFFEOMORPHIC ACTIVE CONTOURS.
SIAM J Imaging Sci. 2010 Apr 30;3(2):176-198. doi: 10.1137/090766401.
2
Computing Diffeomorphic Paths for Large Motion Interpolation.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013 Jun;2013:1227-1232. doi: 10.1109/CVPR.2013.162.
3
Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling.
Neuroimage. 2011 May 1;56(1):149-61. doi: 10.1016/j.neuroimage.2011.01.069. Epub 2011 Jan 31.
4
Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes.
Int J Biomed Imaging. 2013;2013:205494. doi: 10.1155/2013/205494. Epub 2013 Apr 3.
6
Optimal data-driven sparse parameterization of diffeomorphisms for population analysis.
Inf Process Med Imaging. 2011;22:123-34. doi: 10.1007/978-3-642-22092-0_11.
8
ADAPTIVE GRADIENT DESCENT OPTIMIZATION OF INITIAL MOMENTA FOR GEODESIC SHOOTING IN DIFFEOMORPHISMS.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:868-872. doi: 10.1109/ISBI.2017.7950654. Epub 2017 Jun 19.
9
Efficient Parallel Transport in the Group of Diffeomorphisms via Reduction to the Lie Algebra.
Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). 2017 Sep;10551:186-198. doi: 10.1007/978-3-319-67675-3_17. Epub 2017 Sep 8.
10
Statistics on diffeomorphisms via tangent space representations.
Neuroimage. 2004;23 Suppl 1:S161-9. doi: 10.1016/j.neuroimage.2004.07.023.

引用本文的文献

1
Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes.
Int J Biomed Imaging. 2013;2013:205494. doi: 10.1155/2013/205494. Epub 2013 Apr 3.

本文引用的文献

1
Evolutions equations in computational anatomy.
Neuroimage. 2009 Mar;45(1 Suppl):S40-50. doi: 10.1016/j.neuroimage.2008.10.050. Epub 2008 Nov 12.
4
Self-repelling snakes for topology-preserving segmentation models.
IEEE Trans Image Process. 2008 May;17(5):767-79. doi: 10.1109/TIP.2008.919951.
5
Deformable templates using large deformation kinematics.
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
6
Landmark matching via large deformation diffeomorphisms.
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.
7
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
9
Contour extraction from cardiac MRI studies using snakes.
IEEE Trans Med Imaging. 1995;14(2):328-38. doi: 10.1109/42.387714.
10
Intrinsic and extrinsic analysis in computational anatomy.
Neuroimage. 2008 Feb 15;39(4):1803-14. doi: 10.1016/j.neuroimage.2007.08.043. Epub 2007 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验