Tward Daniel J, Ma Jun, Miller Michael I, Younes Laurent
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Int J Biomed Imaging. 2013;2013:205494. doi: 10.1155/2013/205494. Epub 2013 Apr 3.
This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS). Our principal application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the tangent space of the template surface. The dimension of this representation is constrained using principal component analysis generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging data. This is formulated as an energy minimization problem, where energy describes shape variability and data attachment accuracy, and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by comparing to an existing diffeomorphic landmark matching algorithm.
本文介绍了微分同胚主动形状的应用进展,该形状纳入了大变形微分同胚度量映射的守恒定律。满足守恒定律的演化方程是微分同胚度量下的测地线,因此被称为测地线控制的微分同胚主动形状(GDAS)。本文的主要应用是基于皮质下模板结构的参数化表面表示的鲁棒微分同胚映射方法。我们通过模板表面切空间中的初始动量表示对GDAS演化进行参数化。该表示的维度使用从训练样本生成的主成分分析进行约束。在这项工作中,我们试图使用模板表面从灰度T1磁共振成像数据生成具有三个数据附着项的海马体分割:表面匹配、地标匹配和内外建模。这被表述为一个能量最小化问题,其中能量描述形状变异性和数据附着精度,并且我们推导出一个变分解。在数值优化中采用梯度下降策略。对于地标匹配情况,通过与现有的微分同胚地标匹配算法进行比较,我们展示了该算法应用于大型神经解剖学研究工作流程时的鲁棒性。