Suppr超能文献

基于混合变压器和进化粒子群优化的水下图像增强

Underwater image enhancement using hybrid transformers and evolutionary particle swarm optimization.

作者信息

Kumar Ajay, Berar Gagandeep, Sharma Manmohan, Noonia Ajit, Verma Gunjan

机构信息

Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India.

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

出版信息

Sci Rep. 2025 Aug 12;15(1):29575. doi: 10.1038/s41598-025-14439-5.

Abstract

Underwater imaging is a complex task due to inherent challenges such as limited visibility, color distortion, and light scattering in the water medium. To address these issues and enhance underwater image quality, this research presents a novel framework based on a Hybrid Transformer Network optimized using Particle Swarm Optimization (HTN-PSO). The HTN-PSO framework combines the strengths of convolutional neural networks and transformer models to effectively capture low-level features and model long-range dependencies. Simultaneously, PSO optimizes the transformer's parameters to maximize the enhancement quality of underwater images. The proposed framework consists of four main stages: data augmentation, pre-processing, feature extraction using HTN-PSO, and enhanced image reconstruction. The performance of HTN-PSO is evaluated using objective quality metrics such as UIQM, NIQE, and BRISQUE, along with subjective assessments. The proposed model has been evaluated using HTN-PSO on four benchmark datasets: RUIE, EUVP, UWGAN, and UIEB and reports improvements over existing methods. Notably, HTN-PSO achieves a 12% increase in UIQM and up to 15% reduction in BRISQUE compared to baseline techniques, including Uformer and Restormer. Experimental results demonstrate the superiority of the HTN-PSO approach over both traditional and neural network-based methods, offering a promising avenue for improving underwater image enhancement across various domains, including exploration, research, and surveillance applications.

摘要

由于诸如能见度有限、颜色失真以及水介质中的光散射等固有挑战,水下成像成为一项复杂的任务。为了解决这些问题并提高水下图像质量,本研究提出了一种基于使用粒子群优化(HTN-PSO)进行优化的混合变压器网络的新颖框架。HTN-PSO框架结合了卷积神经网络和变压器模型的优势,以有效捕捉低级特征并对长距离依赖性进行建模。同时,粒子群优化算法对变压器的参数进行优化,以最大化水下图像的增强质量。所提出的框架包括四个主要阶段:数据增强、预处理、使用HTN-PSO进行特征提取以及增强图像重建。使用诸如UIQM、NIQE和BRISQUE等客观质量指标以及主观评估来评估HTN-PSO的性能。所提出的模型已在四个基准数据集:RUIE、EUVP、UWGAN和UIEB上使用HTN-PSO进行了评估,并报告了相对于现有方法的改进。值得注意的是,与包括Uformer和Restormer在内的基线技术相比,HTN-PSO在UIQM上提高了12%,在BRISQUE上最多降低了15%。实验结果证明了HTN-PSO方法相对于传统方法和基于神经网络的方法的优越性,为跨包括勘探、研究和监视应用等各个领域改进水下图像增强提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5753/12344000/fc212f5c2d5d/41598_2025_14439_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验