Laboratoire de photonique et interfaces, Institut des sciences et ingénierie chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Nano Lett. 2010 Oct 13;10(10):4155-60. doi: 10.1021/nl102708c.
We introduce a simple solution-based strategy to decouple morphological and functional effects of annealing nanostructured, porous electrodes by encapsulation with a SiO(2) confinement scaffold before high temperature treatment. We demonstrate the effectiveness of this approach using porous hematite (α-Fe(2)O(3)) photoanodes applied for the storage of solar energy via water splitting and show that the feature size and electrode functionality due to dopant activation can be independently controlled. This allows a significant increase in water oxidation photocurrent from 1.57 mA cm(-2) (in the control case) to 2.34 mA cm(-2) under standard illumination conditions in 1 M NaOH electrolyte-the highest reported for a solution-processed hematite photoanode. This increase is attributed to the improved quantum efficiency, especially with longer wavelength photons, due to a smaller particle size, which is afforded by our encapsulation strategy.
我们介绍了一种简单的基于溶液的策略,通过在高温处理前用 SiO(2) 限制支架封装来分离纳米结构多孔电极的形态和功能效应。我们使用多孔赤铁矿 (α-Fe(2)O(3)) 光阳极作为示例证明了这种方法的有效性,该光阳极可用于通过水分解来存储太阳能,并表明由于掺杂剂激活导致的特征尺寸和电极功能可以独立控制。这使得在 1 M NaOH 电解质中,标准照明条件下的水氧化光电流从 1.57 mA cm(-2)(在对照情况下)显著增加到 2.34 mA cm(-2),这是报道的最高值溶液处理赤铁矿光阳极。这种增加归因于量子效率的提高,特别是由于粒径较小,对于较长波长的光子,这是我们的封装策略所提供的。