Suppr超能文献

构象多样性与计算酶设计。

Conformational diversity and computational enzyme design.

机构信息

Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Opin Chem Biol. 2010 Oct;14(5):676-82. doi: 10.1016/j.cbpa.2010.08.010. Epub 2010 Sep 7.

Abstract

The application of computational protein design methods to the design of enzyme active sites offers potential routes to new catalysts and new reaction specificities. Computational design methods have typically treated the protein backbone as a rigid structure for the sake of computational tractability. However, this fixed-backbone approximation introduces its own special challenges for enzyme design and it contrasts with an emerging picture of natural enzymes as dynamic ensembles with multiple conformations and motions throughout a reaction cycle. This review considers the impact of conformational variation and dynamics on computational enzyme design and it highlights new approaches to addressing protein conformational diversity in enzyme design including recent advances in multi-state design, backbone flexibility, and computational library design.

摘要

计算蛋白质设计方法在酶活性位点设计中的应用为新型催化剂和新反应特异性提供了潜在途径。出于计算的可处理性,计算设计方法通常将蛋白质骨架视为刚性结构。然而,这种固定骨架的近似方法给酶设计带来了自身的特殊挑战,并且与自然酶作为具有多个构象和在反应循环中运动的动态集合的新兴观点形成对比。这篇综述考虑了构象变化和动力学对计算酶设计的影响,并强调了在酶设计中解决蛋白质构象多样性的新方法,包括多态性设计、骨架柔性和计算文库设计的最新进展。

相似文献

1
Conformational diversity and computational enzyme design.构象多样性与计算酶设计。
Curr Opin Chem Biol. 2010 Oct;14(5):676-82. doi: 10.1016/j.cbpa.2010.08.010. Epub 2010 Sep 7.
2
Protein conformational populations and functionally relevant substates.蛋白质构象群体和功能相关亚基。
Acc Chem Res. 2014 Jan 21;47(1):149-56. doi: 10.1021/ar400084s. Epub 2013 Aug 29.
3
Motif-directed redesign of enzyme specificity.定向酶特异性的模体改造。
Protein Sci. 2014 Mar;23(3):312-20. doi: 10.1002/pro.2417. Epub 2014 Feb 4.
4
Computational protein design with backbone plasticity.具有主链可塑性的计算蛋白质设计。
Biochem Soc Trans. 2016 Oct 15;44(5):1523-1529. doi: 10.1042/BST20160155. Epub 2016 Oct 19.
5
Multistate approaches in computational protein design.多态方法在计算蛋白质设计中的应用。
Protein Sci. 2012 Sep;21(9):1241-52. doi: 10.1002/pro.2128. Epub 2012 Aug 10.
7
Harnessing Conformational Plasticity to Generate Designer Enzymes.利用构象可塑性来产生设计酶。
J Am Chem Soc. 2020 Jul 1;142(26):11324-11342. doi: 10.1021/jacs.0c04924. Epub 2020 Jun 17.
8
Protein dynamics and enzyme catalysis: insights from simulations.蛋白质动力学与酶催化:模拟研究的见解
Biochim Biophys Acta. 2011 Aug;1814(8):1077-92. doi: 10.1016/j.bbapap.2010.12.002. Epub 2010 Dec 15.
9
Low-Frequency Protein Motions Coupled to Catalytic Sites.低频蛋白运动与催化位点偶联。
Annu Rev Phys Chem. 2020 Apr 20;71:267-288. doi: 10.1146/annurev-physchem-050317-014308.
10
Enzyme dynamics from NMR spectroscopy.核磁共振波谱法研究酶动力学
Acc Chem Res. 2015 Feb 17;48(2):457-65. doi: 10.1021/ar500340a. Epub 2015 Jan 9.

引用本文的文献

5
Engineered control of enzyme structural dynamics and function.酶结构动力学和功能的工程控制。
Protein Sci. 2018 Apr;27(4):825-838. doi: 10.1002/pro.3379. Epub 2018 Feb 16.
10
Computational Enzyme Design: Advances, hurdles and possible ways forward.计算酶设计:进展、障碍及可能的前进方向。
Comput Struct Biotechnol J. 2012 Oct 23;2:e201209009. doi: 10.5936/csbj.201209009. eCollection 2012.

本文引用的文献

5
Origins of catalysis by computationally designed retroaldolase enzymes.计算设计的 retroaldolase 酶的催化起源。
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4937-42. doi: 10.1073/pnas.0913638107. Epub 2010 Mar 1.
8
Computational design of ligand binding is not a solved problem.配体结合的计算设计并非一个已解决的问题。
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18491-6. doi: 10.1073/pnas.0907950106. Epub 2009 Oct 15.
9
Key protein-design papers challenged.关键蛋白质设计论文受到质疑。
Nature. 2009 Oct 15;461(7266):859. doi: 10.1038/461859a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验