School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Environ Sci Technol. 2010 Oct 1;44(19):7692-8. doi: 10.1021/es101386r.
In time-series studies of ambient air pollution and health in large urban areas, measurement errors associated with instrument precision and spatial variability vary widely across pollutants. In this paper, we characterize these errors for selected air pollutants and estimate their impacts on epidemiologic results from an ongoing study of air pollution and emergency department visits in Atlanta. Error was modeled for daily measures of 12 air pollutants using collocated monitor data to characterize instrument precision and data from multiple study area monitors to estimate population-weighted spatial variance. Time-series simulations of instrument and spatial error were generated for each pollutant, added to a reference pollutant time-series, and used in a Poisson generalized linear model of air pollution and cardiovascular emergency department visits. Reductions in risk ratio due to instrument precision error were less than 6%. Error due to spatial variability resulted in average risk ratio reductions of less than 16% for secondary pollutants (O(3), PM(2.5) sulfate, nitrate and ammonium) and between 43% and 68% for primary pollutants (NO(x), NO(2), SO(2), CO, PM(2.5) elemental carbon); pollutants of mixed origin (PM(10), PM(2.5), PM(2.5) organic carbon) had intermediate impacts. Quantifying impacts of measurement error on health effect estimates improves interpretation across ambient pollutants.
在大型城市地区的环境空气污染与健康的时间序列研究中,仪器精度和空间变异性相关的测量误差在污染物之间差异很大。在本文中,我们针对选定的空气污染物描述了这些误差,并估计了它们对正在进行的亚特兰大空气污染与急诊就诊研究中流行病学结果的影响。使用相邻监测器数据来描述仪器精度,以及来自多个研究区域监测器的数据来估计人口加权空间方差,对 12 种空气污染物的每日测量值的误差进行建模。为每个污染物生成仪器和空间误差的时间序列模拟,将其添加到参考污染物时间序列中,并在空气污染与心血管急诊就诊的泊松广义线性模型中使用。由于仪器精度误差导致的风险比降低小于 6%。由于空间变异性导致的误差导致次要污染物(O3、PM2.5 硫酸盐、硝酸盐和铵盐)的平均风险比降低小于 16%,主要污染物(NOx、NO2、SO2、CO、PM2.5 元素碳)的风险比降低在 43%至 68%之间;混合来源的污染物(PM10、PM2.5、PM2.5 有机碳)的影响居中。量化测量误差对健康效应估计的影响可提高对各种环境污染物的解释。