University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, Wisconsin, USA.
Acta Oncol. 2010 Oct;49(7):964-71. doi: 10.3109/0284186X.2010.498440.
Dose painting strategies are limited by optimization algorithms in treatment planning systems and physical constraints of the beam delivery. We investigate dose conformity using the RapidArc optimizer and beam delivery technique. Furthermore, robustness of the plans with respect to positioning uncertainties are evaluated.
A head & neck cancer patient underwent a [(61)Cu]Cu-ATSM PET/CT-scan. PET-SUVs were converted to prescribed dose with a base dose of 60 Gy, and target mean dose 90 Gy. The voxel-based prescription was converted into 3, 5, 7, 9, and 11 discrete prescription levels. Optimization was performed in Eclipse, varying the following parameters: MLC leaf width (5 mm and 2.5 mm), number of arcs (1 and 2) and collimator rotation (0, 15, 30 and 45 degrees). Dose conformity was evaluated using quality volume histograms (QVHs), and relative volumes receiving within ±5% of prescribed dose (Q(0.95-1.05)). Deliverability was tested using a Delta4(®) phantom. Robustness was tested by shifting the isocenter 1 mm and 2 mm in all directions, and recalculating the dose.
Good conformity was obtained using MLC leaf width 2.5 mm, two arcs, and collimators 45/315 degrees, with Q(0.95-1.05)=92.8%, 91.6%, 89.7% and 84.6%. Using only one arc or increasing the MLC leaf width had a small deteriorating effect of 2-5%. Small changes in collimator angle gave small changes, but large changes in collimator angle gave a larger decrease in plan conformity; for angles of 15 and 0 degrees (two arcs, 2.5 mm leaf width), Q(0.95-1.05) decreased by up to 15%. Consistency between planned and delivered dose was good, with ∼90% of gamma values <1. For 1 mm shift, Q(0.95-1.05) was decreased by 5-15%, while for 2 mm shift, Q(0.95-1.05) was decreased to 55-60%.
Results demonstrate feasibility of planning of prescription doses with multiple levels for dose painting using RapidArc, and plans were deliverable. Robustness to positional error was low.
剂量绘制策略受到治疗计划系统中的优化算法和射束传输的物理限制的限制。我们使用 RapidArc 优化器和射束传输技术研究剂量一致性。此外,还评估了计划对于定位不确定性的稳健性。
一名头颈部癌症患者接受了 [(61)Cu]Cu-ATSM PET/CT 扫描。PET-SUV 被转换为规定剂量,基础剂量为 60 Gy,目标平均剂量为 90 Gy。基于体素的处方被转换为 3、5、7、9 和 11 个离散处方水平。在 Eclipse 中进行优化,改变以下参数:MLC 叶片宽度(5 毫米和 2.5 毫米)、弧形数(1 个和 2 个)和准直器旋转(0、15、30 和 45 度)。使用质量体积直方图(QVHs)评估剂量一致性,并评估接受规定剂量 ±5%的相对体积(Q(0.95-1.05))。使用 Delta4(®) 体模测试了可传递性。通过在所有方向上平移等中心点 1 毫米和 2 毫米,并重新计算剂量,测试了稳健性。
使用 MLC 叶片宽度 2.5 毫米、两个弧形和准直器 45/315 度,获得了良好的一致性,Q(0.95-1.05)=92.8%、91.6%、89.7% 和 84.6%。仅使用一个弧形或增加 MLC 叶片宽度会产生 2-5%的轻微恶化。准直器角度的微小变化只会产生微小的变化,但准直器角度的较大变化会导致计划一致性的较大下降;对于角度为 15 和 0 度(两个弧形,2.5 毫米叶片宽度),Q(0.95-1.05) 下降了多达 15%。计划剂量和交付剂量之间的一致性很好,伽马值 <1 的比例约为 90%。对于 1 毫米的偏移,Q(0.95-1.05) 降低了 5-15%,而对于 2 毫米的偏移,Q(0.95-1.05) 降低到 55-60%。
结果表明,使用 RapidArc 进行剂量绘画的多水平处方剂量规划是可行的,并且计划是可传递的。对位置误差的稳健性较低。