Laboratory of Biophysics and Surface and Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
Biomaterials. 2010 Dec;31(34):8827-38. doi: 10.1016/j.biomaterials.2010.08.028. Epub 2010 Sep 15.
High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterization (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), X-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability to identify surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis.
高通量材料发现使用组合聚合物微阵列筛选具有新的和改进的功能的新型生物材料被确立为一种强大的策略。在这里,我们将这种筛选方法与高通量表面特性分析(HT-SC)相结合,以确定表面结构-功能关系。我们探讨了这种组合如何帮助识别控制蛋白质吸附和随后细胞反应的表面化学基团。通过高通量程序筛选大量(496)不同丙烯酸盐聚合物在微阵列格式中的合成,以筛选人胚状体(hEB)细胞对其的粘附。为了确定聚合物表面特性对 hEB 细胞粘附的作用,使用飞行时间二次离子质谱(ToF SIMS)、X 射线光电子能谱(XPS)、皮升液滴静水面接触角(WCA)测量和原子力显微镜(AFM)对这些丙烯酸盐聚合物进行详细的 HT-SC。通过多元分析技术偏最小二乘(PLS)回归,确定了经过纤维连接蛋白(Fn)预处理步骤后表面化学的 ToF SIMS 分析与每个斑点的细胞粘附之间的结构-功能关系。指示吸附 Fn 的二次离子与细胞粘附增加相关,而从聚合物中鉴定出的乙二醇和其他官能团则降低了细胞粘附。此外,还使用 PLS 回归确定了裸聚合物的 ToF SIMS 光谱与每个斑点的细胞粘附之间的强烈关系。这确定了裸聚合物的表面化学和预吸附 Fn 在控制细胞粘附中的作用,如 ToF SIMS 光谱所示。相比之下,在细胞粘附和润湿性、表面粗糙度、元素或功能表面组成之间未发现相关性。表面的 ToF SIMS 数据与细胞粘附之间的相关性表明,使用 ToF SIMS 和多元分析可以识别控制蛋白质吸附和随后细胞粘附的表面基团。