Suppr超能文献

鉴定木质纤维素降解菌 sp. ANA-3 中依赖 l-阿拉伯糖生长所必需的 l-阿拉伯呋喃糖特异性 GafABCD ABC 转运蛋白。

Characterization of the l-arabinofuranose-specific GafABCD ABC transporter essential for l-arabinose-dependent growth of the lignocellulose-degrading bacterium sp. ANA-3.

机构信息

Department of Biology, University of York, PO Box 373, York, UK.

Biology Technology Facility, University of York, PO Box 373, York. YO10 5YW, UK.

出版信息

Microbiology (Reading). 2023 Mar;169(3). doi: 10.1099/mic.0.001308.

Abstract

Microbes that have evolved to live on lignocellulosic biomass face unique challenges in the effective and efficient use of this material as food. The bacterium sp. ANA-3 has the potential to utilize arabinan and arabinoxylan, and uptake of the monosaccharide, l-arabinose, derived from these polymers, is known to be mediated by a single ABC transporter. We demonstrate that the substrate binding protein of this system, GafA, binds specifically to l-arabinofuranose, which is the rare furanose form of l-arabinose found in lignocellulosic biomass. The structure of GafA was resolved to 1.7 Å and comparison to YtfQ (GafA) revealed binding site adaptations that confer specificity for furanose over pyranose forms of monosaccharides, while selecting arabinose over another related monosaccharide, galactose. The discovery of a bacterium with a natural predilection for a sugar found abundantly in certain lignocellulosic materials suggests an intimate connection in the enzymatic release and uptake of the sugar, perhaps to prevent other microbes scavenging this nutrient before it mutarotates to l-arabinopyranose. This biological discovery also provides a clear route to engineer more efficient utilization of plant biomass components in industrial biotechnology.

摘要

能够在木质纤维素生物质上生存的微生物在有效利用这种物质作为食物方面面临着独特的挑战。 sp. ANA-3 具有利用阿拉伯聚糖和阿拉伯木聚糖的潜力,已知从这些聚合物中摄取的单糖 l-阿拉伯糖是由单个 ABC 转运蛋白介导的。 我们证明了该系统的底物结合蛋白 GafA 特异性结合 l-阿拉伯呋喃糖,l-阿拉伯呋喃糖是木质纤维素生物质中 l-阿拉伯糖的罕见呋喃糖形式。 GafA 的结构解析至 1.7 Å,与 YtfQ (GafA) 的比较揭示了结合位点的适应性,使其对呋喃糖形式的单糖具有特异性,而对另一种相关的单糖半乳糖具有选择性。 在发现一种天然偏爱某些木质纤维素材料中丰富的糖的细菌的同时,这表明在酶释放和吸收糖的过程中存在密切联系,也许是为了防止其他微生物在其变旋为 l-阿拉伯吡喃糖之前掠取这种营养物质。 这一生物学发现也为工程化更有效地利用工业生物技术中的植物生物质成分提供了明确途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae9/10191376/02c0786de153/mic-169-1308-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验