Suppr超能文献

在啮齿动物运动 CpG 中,控制速度和网络运作的谷氨酸能机制。

Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CpG.

机构信息

Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet Stockholm, Sweden.

出版信息

Front Neural Circuits. 2010 Aug 6;4. doi: 10.3389/fncir.2010.00019. eCollection 2010.

Abstract

Locomotion is a fundamental motor act that, to a large degree, is controlled by central pattern-generating (CPG) networks in the spinal cord. Glutamate is thought to be responsible for most of the excitatory input to and the excitatory activity within the locomotor CPG. However, previous studies in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad range of ionotropic GluRs in the control of locomotor speed and intrinsic locomotor network function. We show that non-NMDA (non-NMDARs) and NMDA receptor (NMDAR) systems may independently mediate locomotor-like activity and that these receptors set different speeds of locomotor-like activity through mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor activity. This study reveals that a diversity of ionotropic GluRs tunes the network to perform at different locomotor speeds and provides multiple levels for potential regulation and plasticity.

摘要

运动是一种基本的运动行为,在很大程度上受脊髓中的中枢模式生成(CPG)网络控制。谷氨酸被认为是对运动 CPG 的大部分兴奋性输入和兴奋性活动负责。然而,哺乳动物的先前研究对于不同的离子型谷氨酸受体(GluR)在 CPG 功能中的必要性和作用产生了相互矛盾的结果。在这里,我们使用体外新生小鼠腰脊髓的电生理学和药理学技术,研究了广泛的离子型 GluR 在控制运动速度和内在运动网络功能中的作用。我们表明,非 NMDA(非 NMDA 受体)和 NMDA 受体(NMDAR)系统可能独立介导类似于运动的活动,并且这些受体通过在各种网络水平起作用的机制来设定不同的类似于运动的活动速度。AMPA 和海人藻酸受体对于产生最高运动频率是必要的。为了协调,在长时间持续和稳定的运动活动期间,NMDAR 对于将节律信号从网络传递到运动神经元比非 NMDA 受体更重要。这项研究表明,多种离子型 GluR 可调整网络以在不同的运动速度下运行,并为潜在的调节和可塑性提供了多个层次。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf6/2938926/77614e20074a/fncir-04-00019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验