Suppr超能文献

在模拟运动过程中对脊髓神经元的动态募集进行映射。

Mapping the Dynamic Recruitment of Spinal Neurons during Fictive Locomotion.

机构信息

Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

出版信息

J Neurosci. 2020 Dec 9;40(50):9692-9700. doi: 10.1523/JNEUROSCI.1885-20.2020. Epub 2020 Nov 13.

Abstract

The basic rhythmic activity that underlies stepping is generated by a neural network, situated in the spinal cord, known as the locomotor central pattern generator (CPG). While a series of lesion experiments have demonstrated that the mammalian locomotor CPG is distributed throughout the ventral portion of the caudal spinal cord, the specific transverse distribution of this neural network is unclear. Here we evoke fictive locomotor activity of various frequencies in upright spinal cords prepared from male and female neonatal mice. This preparation enables us to use an imaging approach to identify locomotor-related cells across the transverse plane of the spinal cord. Results indicate that there is a clear shift in the recruitment of cells toward the ventromedial, and away from the ventrolateral, spinal cord as the frequency of fictive locomotion increases. Surprisingly, the analysis of multiple frequencies of fictive locomotion in the same spinal cord indicates that few neurons are involved in locomotor outputs across multiple speeds. Collectively, these experiments allow us to map the transverse distribution of the locomotor CPG and highlight the pattern of dynamic recruitment that occurs within this neural circuit as the frequency is altered. Our findings are consistent with data indicating that there is a speed-dependent recruitment of interneuronal populations during locomotion and suggest that the locomotor CPG is not a static network, but rather the specific cells recruited vary extensively based on demand. In this article, we use an imaging approach to identify all those cells that are rhythmically active at the same frequency as fictive locomotion recorded from the ventral roots of the isolated spinal cord. These experiments allow us to map the distribution of locomotor-related cells across the transverse plane of the spinal cord and identify the recruitment pattern of these cells as the frequency of locomotor outputs is altered. Our results indicate that there are drastic changes in the specific neurons activated at different frequencies and provide support for the concept that the locomotor central pattern generator is a modular network with speed-dependent recruitment of interneuronal components.

摘要

基本的节奏活动,构成了迈步的基础,是由一个位于脊髓中的神经网络产生的,这个神经网络被称为运动中枢模式发生器(CPG)。虽然一系列的损伤实验已经表明,哺乳动物的运动 CPG 分布在脊髓尾部的腹侧部分,但这个神经网络的具体横向分布尚不清楚。在这里,我们在雄性和雌性新生小鼠的直立脊髓中诱发各种频率的虚拟运动活动。这种准备使我们能够使用成像方法在脊髓的横切面上识别与运动相关的细胞。结果表明,随着虚拟运动频率的增加,细胞向腹侧和远离腹侧的募集有明显的转移。令人惊讶的是,对同一脊髓中多个虚拟运动频率的分析表明,很少有神经元参与多个速度的运动输出。总的来说,这些实验使我们能够绘制运动 CPG 的横向分布,并强调在改变频率时,这个神经回路中发生的动态募集模式。我们的发现与表明在运动过程中存在神经元群体的速度依赖性募集的数据一致,并表明运动中枢模式发生器不是一个静态网络,而是特定的募集细胞根据需求广泛变化。在本文中,我们使用成像方法来识别那些与从孤立脊髓腹根记录的虚拟运动相同频率有节奏活动的所有细胞。这些实验使我们能够在脊髓的横切面上绘制与运动相关的细胞的分布,并确定这些细胞的募集模式,因为运动输出的频率发生了变化。我们的结果表明,在不同频率下激活的特定神经元有很大的变化,并为运动中枢模式发生器是一个具有速度依赖性的中间神经元成分募集的模块化网络的概念提供了支持。

相似文献

引用本文的文献

3
Spinal Interneurons: Diversity and Connectivity in Motor Control.脊髓中间神经元:运动控制中的多样性和连通性。
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
8
Activity of Spinal Interneurons during Forward and Backward Locomotion.脊髓中间神经元在向前和向后运动过程中的活动。
J Neurosci. 2022 Apr 27;42(17):3570-3586. doi: 10.1523/JNEUROSCI.1884-21.2022. Epub 2022 Mar 16.

本文引用的文献

4
Decoding the organization of spinal circuits that control locomotion.解析控制运动的脊髓回路的组织架构。
Nat Rev Neurosci. 2016 Apr;17(4):224-38. doi: 10.1038/nrn.2016.9. Epub 2016 Mar 3.
5
Efficient codes and balanced networks.高效编码与均衡网络。
Nat Neurosci. 2016 Mar;19(3):375-82. doi: 10.1038/nn.4243.
7
Plasticity of cortical excitatory-inhibitory balance.皮质兴奋-抑制平衡的可塑性。
Annu Rev Neurosci. 2015 Jul 8;38:195-219. doi: 10.1146/annurev-neuro-071714-034002. Epub 2015 Apr 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验