Suppr超能文献

开放离子通道中温度变化的流体动力学模型。

Hydrodynamic model of temperature change in open ionic channels.

作者信息

Chen D P, Eisenberg R S, Jerome J W, Shu C W

机构信息

Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612 USA.

出版信息

Biophys J. 1995 Dec;69(6):2304-22. doi: 10.1016/S0006-3495(95)80101-3.

Abstract

Most theories of open ionic channels ignore heat generated by current flow, but that heat is known to be significant when analogous currents flow in semiconductors, so a generalization of the Poisson-Nernst-Planck theory of channels, called the hydrodynamic model, is needed. The hydrodynamic theory is a combination of the Poisson and Euler field equations of electrostatics and fluid dynamics, conservation laws that describe diffusive and convective flow of mass, heat, and charge (i.e., current), and their coupling. That is to say, it is a kinetic theory of solute and solvent flow, allowing heat and current flow as well, taking into account density changes, temperature changes, and electrical potential gradients. We integrate the equations with an essentially nonoscillatory shock-capturing numerical scheme previously shown to be stable and accurate. Our calculations show that 1) a significant amount of electrical energy is exchanged with the permeating ions; 2) the local temperature of the ions rises some tens of degrees, and this temperature rise significantly alters for ionic flux in a channel 25 A long, such as gramicidin-A; and 3) a critical parameter, called the saturation velocity, determines whether ionic motion is overdamped (Poisson-Nernst-Planck theory), is an intermediate regime (called the adiabatic approximation in semiconductor theory), or is altogether unrestricted (requiring the full hydrodynamic model). It seems that significant temperature changes are likely to accompany current flow in the open ionic channel.

摘要

大多数关于开放离子通道的理论都忽略了电流流动产生的热量,但众所周知,当类似的电流在半导体中流动时,这种热量是相当可观的,因此需要对通道的泊松 - 能斯特 - 普朗克理论进行推广,即所谓的流体动力学模型。流体动力学理论是静电学和流体动力学的泊松方程与欧拉场方程的结合,是描述质量、热量和电荷(即电流)的扩散和对流流动及其耦合的守恒定律。也就是说,它是溶质和溶剂流动的动力学理论,同时也考虑了热流和电流,兼顾了密度变化、温度变化和电势梯度。我们使用一种先前已证明稳定且准确的基本无振荡激波捕捉数值格式对方程进行积分。我们的计算表明:1)大量电能与渗透离子进行交换;2)离子的局部温度升高几十度,这种温度升高会显著改变诸如短杆菌肽 - A这类25埃长通道中的离子通量;3)一个关键参数,即饱和速度,决定了离子运动是过阻尼的(泊松 - 能斯特 - 普朗克理论)、处于中间状态(在半导体理论中称为绝热近似)还是完全不受限制(需要完整的流体动力学模型)。看来,开放离子通道中的电流流动可能会伴随显著的温度变化。

相似文献

9
Physical descriptions of experimental selectivity measurements in ion channels.离子通道实验选择性测量的物理描述。
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.

引用本文的文献

1
Joule heating involving ion currents through channel proteins.焦耳热涉及通过通道蛋白的离子电流。
Biophys Physicobiol. 2023 Jun 28;20(3):e200030. doi: 10.2142/biophysico.bppb-v20.0030. eCollection 2023.
2
Emerging Diamond Quantum Sensing in Bio-Membranes.生物膜中新兴的金刚石量子传感
Membranes (Basel). 2022 Sep 30;12(10):957. doi: 10.3390/membranes12100957.
8
Variational multiscale models for charge transport.电荷输运的变分多尺度模型。
SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. doi: 10.1137/110845690. Epub 2012 Nov 8.
10
Differential geometry based multiscale models.基于微分几何的多尺度模型。
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.

本文引用的文献

1
Complex dynamics in coupled cardiac pacemaker cells.
Phys Rev Lett. 1993 Oct 11;71(15):2501-2504. doi: 10.1103/PhysRevLett.71.2501.
6
Sodium in gramicidin: an example of a permion.短杆菌肽中的钠:一种渗透离子的例子。
Biophys J. 1995 Mar;68(3):906-24. doi: 10.1016/S0006-3495(95)80267-5.
7
The pore dimensions of gramicidin A.短杆菌肽A的孔径尺寸。
Biophys J. 1993 Dec;65(6):2455-60. doi: 10.1016/S0006-3495(93)81293-1.
9
Water structure in the Gramicidin A transmembrane channel.短杆菌肽A跨膜通道中的水结构。
Biochim Biophys Acta. 1984 Apr 11;771(2):151-64. doi: 10.1016/0005-2736(84)90527-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验