Suppr超能文献

布氏嗜碘吸虫在间期中对半胱氨酸酶基因组织的非随机排布及与曼氏血吸虫共培养细胞中激活基因的空间重定位。

Non-random organization of the Biomphalaria glabrata genome in interphase Bge cells and the spatial repositioning of activated genes in cells co-cultured with Schistosoma mansoni.

机构信息

Biomedical Research Institute, 12111 Parklawn Dr. Rockville, MD 20852, USA.

出版信息

Int J Parasitol. 2011 Jan;41(1):61-70. doi: 10.1016/j.ijpara.2010.07.015. Epub 2010 Sep 16.

Abstract

Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B. glabrata genome in Bge cells was studied using image analysis through positioning territories of differently sized chromosomes within cell nuclei. The snail chromosome territories are similar in morphology as well as in non-random radial positioning as those found in other derived protostome and deuterostome organisms. Specific monitoring of four gene loci, piwi, BgPrx, actin and ferritin, revealed non-random radial positioning of the genome. This indicates that specific parts of the snail genome reside in reproducible nuclear addresses. To determine whether exposure to parasite is reflected in genome organization, the interphase spatial positioning of genes was assessed after co-culturing Bge cells with either normal or irradiation attenuated miracidia for 30 min to 24 h. The loci of actin and ferritin, genes that are up-regulated in the snail when subjected to infection, were visualized by fluorescence in situ hybridisation (FISH) and their radial nuclear positions i.e. their position in the interphase nucleus with respect to the nuclear edge/envelope, mapped. Interestingly, large scale gene repositioning correlated to temporal kinetics of gene expression levels in Bge cells co-cultured with normal miracidia while irradiated parasites failed to elicit similar gene expression or gene loci repositioning as demonstrated using the ferritin gene. This indicates that normal but not attenuated schistosomes provide stimuli that evoke host responses that are reflected in the host's nuclear architecture. We believe that this is not only the first time that gene-repositioning studies have been attempted in a mollusc but also demonstrates a parasite influencing the interphase genome organization of its host.

摘要

光滑双脐螺是寄生性吸虫曼氏血吸虫的主要中间宿主,也是人类血吸虫病的病原体。为了解析这种宿主-寄生虫相互作用的分子基础,Bge 胚胎细胞系为评估蜗牛和寄生虫之间的相互作用是否影响两种生物的细胞和基因组生物学提供了一个独特的体外模型系统。通过在细胞核内定位不同大小染色体的区域,使用图像分析研究了 B. glabrata 基因组在 Bge 细胞中的组织。蜗牛染色体区室在形态和非随机的放射状定位方面与其他后生动物和中胚层动物中发现的染色体区室相似。对四个基因座 piwi、BgPrx、肌动蛋白和铁蛋白的特定监测显示了基因组的非随机放射状定位。这表明蜗牛基因组的特定部分位于可重复的核地址。为了确定寄生虫的暴露是否反映在基因组组织中,在将 Bge 细胞与正常或辐照减弱的毛蚴共培养 30 分钟至 24 小时后,评估了基因的间期空间定位。用荧光原位杂交(FISH)可视化了肌动蛋白和铁蛋白的基因座,这两个基因在蜗牛受到感染时表达上调,并绘制了它们在核内的放射状核位置,即在与核边缘/包膜相对的间期核中的位置。有趣的是,与正常毛蚴共培养的 Bge 细胞中的大尺度基因重定位与基因表达水平的时间动力学相关,而用铁蛋白基因证明辐照寄生虫不能引起类似的基因表达或基因座重定位。这表明正常而非减弱的血吸虫提供了刺激,引发了宿主的反应,这些反应反映在宿主的核结构中。我们相信,这不仅是首次在软体动物中尝试进行基因重定位研究,而且还证明了寄生虫影响其宿主的间期基因组组织。

相似文献

2
Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni.
PLoS Negl Trop Dis. 2014 Sep 11;8(9):e3013. doi: 10.1371/journal.pntd.0003013. eCollection 2014 Sep.
4
Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line.
Parasit Vectors. 2018 Sep 4;11(1):496. doi: 10.1186/s13071-018-3059-2.
5
9
Involvement of the cytokine MIF in the snail host immune response to the parasite Schistosoma mansoni.
PLoS Pathog. 2010 Sep 23;6(9):e1001115. doi: 10.1371/journal.ppat.1001115.

引用本文的文献

3
Assessment of the Utility of Gene Positioning Biomarkers in the Stratification of Prostate Cancers.
Front Genet. 2019 Oct 17;10:1029. doi: 10.3389/fgene.2019.01029. eCollection 2019.
5
Comparative immunogenomics of molluscs.
Dev Comp Immunol. 2017 Oct;75:3-15. doi: 10.1016/j.dci.2017.03.013. Epub 2017 Mar 18.
6
H+ channels in embryonic Biomphalaria glabrata cell membranes: Putative roles in snail host-schistosome interactions.
PLoS Negl Trop Dis. 2017 Mar 20;11(3):e0005467. doi: 10.1371/journal.pntd.0005467. eCollection 2017 Mar.
7
Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool.
Front Genet. 2016 Jul 26;7:134. doi: 10.3389/fgene.2016.00134. eCollection 2016.
8
Locus-specific gene repositioning in prostate cancer.
Mol Biol Cell. 2016 Jan 15;27(2):236-46. doi: 10.1091/mbc.E15-05-0280. Epub 2015 Nov 12.
9
Susceptibility of Snails to Infection with Schistosomes is influenced by Temperature and Expression of Heat Shock Proteins.
Epidemiology (Sunnyvale). 2015 Jun;5(2). doi: 10.4172/2161-1165.1000189. Epub 2015 Jun 21.
10
A conserved set of maternal genes? Insights from a molluscan transcriptome.
Int J Dev Biol. 2014;58(6-8):501-11. doi: 10.1387/ijdb.140121ad.

本文引用的文献

1
Chromosome territories.
Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a003889. doi: 10.1101/cshperspect.a003889.
4
Disease-specific gene repositioning in breast cancer.
J Cell Biol. 2009 Dec 14;187(6):801-12. doi: 10.1083/jcb.200909127.
5
Dynamic changes of territories 17 and 18 during EBV-infection of human lymphocytes.
Mol Biol Rep. 2010 Jun;37(5):2347-54. doi: 10.1007/s11033-009-9740-y. Epub 2009 Aug 15.
7
Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction.
Annu Rev Genomics Hum Genet. 2009;10:211-40. doi: 10.1146/annurev-genom-082908-150036.
9
Biomphalaria glabrata peroxiredoxin: effect of schistosoma mansoni infection on differential gene regulation.
Mol Biochem Parasitol. 2009 Sep;167(1):20-31. doi: 10.1016/j.molbiopara.2009.04.002. Epub 2009 Apr 11.
10
Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.
Cell. 2009 Apr 17;137(2):356-68. doi: 10.1016/j.cell.2009.01.052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验