Suppr超能文献

用于动物气溶胶模型开发的全身暴露系统中生物气溶胶实时分析的采样端口。

Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development.

作者信息

Saini Divey, Hopkins Gregory W, Chen Ching-Ju, Seay Sarah A, Click Eva M, Lee Sunhee, Hartings Justin M, Frothingham Richard

机构信息

Duke Human Vaccine Institute, PO Box 103020, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Pharmacol Toxicol Methods. 2011 Mar-Apr;63(2):143-9. doi: 10.1016/j.vascn.2010.09.002. Epub 2010 Sep 16.

Abstract

INTRODUCTION

Multiple factors influence the viability of aerosolized bacteria. The delivery of aerosols is affected by chamber conditions (humidity, temperature, and pressure) and bioaerosol characteristics (particle number, particle size distribution, and viable aerosol concentration). Measurement of viable aerosol concentration and particle size is essential to optimize viability and lung delivery. The Madison chamber is widely used to expose small animals to infectious aerosols.

METHODS

A multiplex sampling port was added to the Madison chamber to measure the chamber conditions and bioaerosol characteristics. Aerosols of three pathogens (Bacillus anthracis, Yersinia pestis, and Mycobacterium tuberculosis) were generated under constant conditions and their bioaerosol characteristics were analyzed. Airborne microbes were captured using an impinger or BioSampler. The particle size distribution of airborne microbes was determined using an aerodynamic particle sizer (APS). Viable aerosol concentration, spray factor (viable aerosol concentration/inoculum concentration), and dose presented to the mouse were calculated. Dose retention efficiency and viable aerosol retention rate were calculated from the sampler titers to determine the efficiency of microbe retention in lungs of mice.

RESULTS

B. anthracis, Y. pestis, and M. tuberculosis aerosols were sampled through the port. The count mean aerodynamic sizes were 0.98, 0.77, and 0.78 μm with geometric standard deviations of 1.60, 1.90, and 2.37, and viable aerosol concentrations in the chamber were 211, 57, and 1 colony-forming unit (CFU)/mL, respectively. Based on the aerosol concentrations, the doses presented to mice for the three pathogens were 2.5e5, 2.2e4 and 464 CFU.

DISCUSSION

Using the multiplex sampling port we determined whether the animals were challenged with an optimum bioaerosol based on dose presented and respirable particle size.

摘要

引言

多种因素影响雾化细菌的生存能力。气溶胶的输送受腔室条件(湿度、温度和压力)以及生物气溶胶特性(颗粒数量、粒径分布和存活气溶胶浓度)的影响。测量存活气溶胶浓度和粒径对于优化生存能力和肺部递送至关重要。麦迪逊腔室被广泛用于使小动物暴露于感染性气溶胶中。

方法

在麦迪逊腔室上添加了一个多重采样端口,以测量腔室条件和生物气溶胶特性。在恒定条件下生成三种病原体(炭疽芽孢杆菌、鼠疫耶尔森菌和结核分枝杆菌)的气溶胶,并分析其生物气溶胶特性。使用撞击式采样器或生物采样器捕获空气中的微生物。使用空气动力学粒径分析仪(APS)确定空气中微生物的粒径分布。计算存活气溶胶浓度、喷雾因子(存活气溶胶浓度/接种物浓度)以及给予小鼠的剂量。根据采样器滴度计算剂量保留效率和存活气溶胶保留率,以确定小鼠肺部微生物保留的效率。

结果

通过该端口对炭疽芽孢杆菌、鼠疫耶尔森菌和结核分枝杆菌气溶胶进行了采样。计数平均空气动力学粒径分别为0.98、0.77和0.78μm,几何标准差分别为1.60、1.90和2.37,腔室内的存活气溶胶浓度分别为211、57和1个菌落形成单位(CFU)/mL。根据气溶胶浓度,三种病原体给予小鼠的剂量分别为2.5e5、2.2e4和464 CFU。

讨论

使用多重采样端口,我们根据给予的剂量和可吸入粒径确定动物是否受到了最佳生物气溶胶的攻击。

相似文献

1
Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development.
J Pharmacol Toxicol Methods. 2011 Mar-Apr;63(2):143-9. doi: 10.1016/j.vascn.2010.09.002. Epub 2010 Sep 16.
2
Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method.
Environ Monit Assess. 2013 May;185(5):3993-4003. doi: 10.1007/s10661-012-2844-1. Epub 2012 Sep 7.
3
Characterization of a head-only aerosol exposure system for nonhuman primates.
Inhal Toxicol. 2010 Feb;22(3):224-33. doi: 10.3109/08958370903191023.
4
Design, construction and validation of a nose-only inhalation exposure system to measure infectivity of filtered bioaerosols in mice.
J Appl Microbiol. 2012 Oct;113(4):757-66. doi: 10.1111/j.1365-2672.2012.05403.x. Epub 2012 Aug 21.
5
Whole-body nanoparticle aerosol inhalation exposures.
J Vis Exp. 2013 May 7(75):e50263. doi: 10.3791/50263.
6
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
7
Generation and homogeneity of aerosols in a human whole-body inhalation chamber.
Ann Occup Hyg. 2008 Aug;52(6):545-54. doi: 10.1093/annhyg/men039. Epub 2008 Jul 7.
9
Human exposure to polyhexamethylene guanidine phosphate from humidifiers in residential settings: Cause of serious lung disease.
Toxicol Ind Health. 2017 Nov;33(11):835-842. doi: 10.1177/0748233717724983. Epub 2017 Oct 9.

引用本文的文献

1
Targeted dose delivery of Mycobacterium tuberculosis in mice using silicon antifoaming agent via aerosol exposure system.
PLoS One. 2022 Oct 13;17(10):e0276130. doi: 10.1371/journal.pone.0276130. eCollection 2022.
2
A Vibrating Mesh Nebulizer as an Alternative to the Collison Three-Jet Nebulizer for Infectious Disease Aerobiology.
Appl Environ Microbiol. 2019 Aug 14;85(17). doi: 10.1128/AEM.00747-19. Print 2019 Sep 1.
3
Evaluation of Exposure to and during Showering.
J Aerosol Sci. 2017 Dec;114:77-93. doi: 10.1016/j.jaerosci.2017.08.008.
4
Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies.
J Hosp Infect. 2016 Jul;93(3):242-55. doi: 10.1016/j.jhin.2016.03.017. Epub 2016 Apr 1.
5
Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A.
Vaccine. 2015 Nov 27;33(48):6800-8. doi: 10.1016/j.vaccine.2015.10.017. Epub 2015 Oct 23.
6
CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.
Dis Model Mech. 2015 Dec;8(12):1643-50. doi: 10.1242/dmm.021394. Epub 2015 Oct 8.
7
Reduced virulence of an extensively drug-resistant outbreak strain of Mycobacterium tuberculosis in a murine model.
PLoS One. 2014 Apr 14;9(4):e94953. doi: 10.1371/journal.pone.0094953. eCollection 2014.
8
Impact of surfactant protein D, interleukin-5, and eosinophilia on Cryptococcosis.
Infect Immun. 2014 Feb;82(2):683-93. doi: 10.1128/IAI.00855-13. Epub 2013 Nov 25.

本文引用的文献

1
Effects of humidity and other factors on the generation and sampling of a coronavirus aerosol.
Aerobiologia (Bologna). 2007;23(4):239-248. doi: 10.1007/s10453-007-9068-9. Epub 2007 Jul 25.
2
Analysis of respiratory patterns in laboratory animals.
Am J Physiol. 1947 Jul 1;150(1):78-83. doi: 10.1152/ajplegacy.1947.150.1.78.
3
Model for the deposition of aerosol particles in the respiratory tract of the rat. I. Nonhygroscopic particle deposition.
J Aerosol Med Pulm Drug Deliv. 2008 Sep;21(3):291-307. doi: 10.1089/jamp.2008.0689.
4
Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92.
Microbiology (Reading). 2008 Jul;154(Pt 7):1939-1948. doi: 10.1099/mic.0.2008/017335-0.
6
Determination of antibiotic efficacy against Bacillus anthracis in a mouse aerosol challenge model.
Antimicrob Agents Chemother. 2007 Apr;51(4):1373-9. doi: 10.1128/AAC.01050-06. Epub 2007 Feb 12.
8
Bioaerosol mass spectrometry for rapid detection of individual airborne Mycobacterium tuberculosis H37Ra particles.
Appl Environ Microbiol. 2005 Oct;71(10):6086-95. doi: 10.1128/AEM.71.10.6086-6095.2005.
9
Dosimetric comparisons of particle deposition and retention in rats and humans.
Inhal Toxicol. 2005 Jun-Jul;17(7-8):355-85. doi: 10.1080/08958370590929475.
10
Paucibacillary tuberculosis in mice after prior aerosol immunization with Mycobacterium bovis BCG.
Infect Immun. 2004 Feb;72(2):1065-71. doi: 10.1128/IAI.72.2.1065-1071.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验