Suppr超能文献

CLASP1、astrin 和 Kif2b 形成一个分子开关,调节着动粒-微管的动态,以促进有丝分裂进程和保真度。

CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity.

机构信息

Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03766, USA.

出版信息

EMBO J. 2010 Oct 20;29(20):3531-43. doi: 10.1038/emboj.2010.230. Epub 2010 Sep 17.

Abstract

Accurate chromosome segregation during mitosis requires precise coordination of various processes, such as chromosome alignment, maturation of proper kinetochore-microtubule (kMT) attachments, correction of erroneous attachments, and silencing of the spindle assembly checkpoint (SAC). How these fundamental aspects of mitosis are coordinately and temporally regulated is poorly understood. In this study, we show that the temporal regulation of kMT attachments by CLASP1, astrin and Kif2b is central to mitotic progression and chromosome segregation fidelity. In early mitosis, a Kif2b-CLASP1 complex is recruited to kinetochores to promote chromosome movement, kMT turnover, correction of attachment errors, and maintenance of SAC signalling. However, during metaphase, this complex is replaced by an astrin-CLASP1 complex, which promotes kMT stability, chromosome alignment, and silencing of the SAC. We show that these two complexes are differentially recruited to kinetochores and are mutually exclusive. We also show that other kinetochore proteins, such as Kif18a, affect kMT attachments and chromosome movement through these proteins. Thus, CLASP1-astrin-Kif2b complex act as a central switch at kinetochores that defines mitotic progression and promotes fidelity by temporally regulating kMT attachments.

摘要

有丝分裂过程中染色体的精确分离需要各种过程的精确协调,例如染色体的排列、适当的动粒-微管(kMT)连接的成熟、错误连接的纠正以及纺锤体组装检查点(SAC)的沉默。这些有丝分裂的基本方面是如何协调和时间调节的还知之甚少。在这项研究中,我们表明 CLASP1、astrin 和 Kif2b 对 kMT 连接的时间调节对于有丝分裂的进展和染色体分离的保真度至关重要。在早期有丝分裂中,Kif2b-CLASP1 复合物被招募到动粒上,以促进染色体运动、kMT 周转率、连接错误的纠正以及 SAC 信号的维持。然而,在中期,该复合物被 astrin-CLASP1 复合物取代,该复合物促进 kMT 的稳定性、染色体的排列和 SAC 的沉默。我们表明,这两种复合物以不同的方式被招募到动粒上,并且是相互排斥的。我们还表明,其他动粒蛋白,如 Kif18a,通过这些蛋白影响 kMT 连接和染色体运动。因此,CLASP1-astrin-Kif2b 复合物作为动粒上的中央开关,定义了有丝分裂的进展,并通过时间调节 kMT 连接来促进保真度。

相似文献

2
How the SAC gets the axe: Integrating kinetochore microtubule attachments with spindle assembly checkpoint signaling.
Bioarchitecture. 2015;5(1-2):1-12. doi: 10.1080/19490992.2015.1090669. Epub 2015 Oct 2.
3
Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis.
J Biol Chem. 2015 Nov 6;290(45):27053-27066. doi: 10.1074/jbc.M115.658534. Epub 2015 Sep 16.
5
CENP-E kinesin interacts with SKAP protein to orchestrate accurate chromosome segregation in mitosis.
J Biol Chem. 2012 Jan 6;287(2):1500-9. doi: 10.1074/jbc.M111.277194. Epub 2011 Nov 22.
6
How do kinetochores CLASP dynamic microtubules?
Cell Cycle. 2003 Nov-Dec;2(6):511-4. doi: 10.4161/cc.2.6.576.
7
The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface.
Curr Biol. 2022 Jun 20;32(12):2621-2631.e3. doi: 10.1016/j.cub.2022.04.061. Epub 2022 May 16.
8
Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation.
Mol Biol Cell. 2012 Jun;23(12):2264-74. doi: 10.1091/mbc.E11-12-1013. Epub 2012 Apr 25.

引用本文的文献

3
Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation.
Nat Commun. 2024 Dec 30;15(1):10782. doi: 10.1038/s41467-024-54922-7.
6
Diverse microtubule-targeted anticancer agents kill cells by inducing chromosome missegregation on multipolar spindles.
PLoS Biol. 2023 Oct 26;21(10):e3002339. doi: 10.1371/journal.pbio.3002339. eCollection 2023 Oct.
7
An unconventional TOG domain is required for CLASP localization.
Curr Biol. 2023 Aug 21;33(16):3522-3528.e7. doi: 10.1016/j.cub.2023.07.009. Epub 2023 Jul 28.
8
Double-checking chromosome segregation.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202301106. Epub 2023 Apr 5.
10
The importance of microtubule-dependent tension in accurate chromosome segregation.
Front Cell Dev Biol. 2023 Jan 23;11:1096333. doi: 10.3389/fcell.2023.1096333. eCollection 2023.

本文引用的文献

1
Loss of pRB causes centromere dysfunction and chromosomal instability.
Genes Dev. 2010 Jul 1;24(13):1364-76. doi: 10.1101/gad.1917310. Epub 2010 Jun 15.
2
Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling.
Genes Dev. 2010 Jul 1;24(13):1377-88. doi: 10.1101/gad.580710. Epub 2010 Jun 15.
3
Molecular control of kinetochore-microtubule dynamics and chromosome oscillations.
Nat Cell Biol. 2010 Apr;12(4):319-29. doi: 10.1038/ncb2033. Epub 2010 Mar 14.
5
Deviant kinetochore microtubule dynamics underlie chromosomal instability.
Curr Biol. 2009 Dec 1;19(22):1937-42. doi: 10.1016/j.cub.2009.09.055. Epub 2009 Oct 29.
6
Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux.
Curr Biol. 2009 Sep 29;19(18):1566-72. doi: 10.1016/j.cub.2009.07.059. Epub 2009 Sep 3.
7
Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis.
Curr Biol. 2009 Sep 15;19(17):1467-72. doi: 10.1016/j.cub.2009.07.017. Epub 2009 Jul 30.
8
Protein architecture of the human kinetochore microtubule attachment site.
Cell. 2009 May 15;137(4):672-84. doi: 10.1016/j.cell.2009.03.035.
9
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy.
Curr Biol. 2009 Apr 28;19(8):694-9. doi: 10.1016/j.cub.2009.02.056. Epub 2009 Apr 2.
10
The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility.
Dev Cell. 2009 Mar;16(3):374-85. doi: 10.1016/j.devcel.2009.01.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验