Suppr超能文献

由 CENP-E 将 CLASPs 靶向到动粒而不依赖于马达,促进微管周转和向极运输。

Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux.

机构信息

Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.

出版信息

Curr Biol. 2009 Sep 29;19(18):1566-72. doi: 10.1016/j.cub.2009.07.059. Epub 2009 Sep 3.

Abstract

Efficient chromosome segregation during mitosis relies on the coordinated activity of molecular motors with proteins that regulate kinetochore attachments to dynamic spindle microtubules [1]. CLASPs are conserved kinetochore- and microtubule-associated proteins encoded by two paralog genes, clasp1 and clasp2, and have been previously implicated in the regulation of kinetochore microtubule dynamics [2-4]. However, it remains unknown how CLASPs work in concert with other proteins to form a functional kinetochore microtubule interface. Here we have identified mitotic interactors of human CLASP1 via a proteomic approach. Among these, the microtubule plus-end-directed motor CENP-E [5] was found to form a complex with CLASP1 that colocalizes to multiple structures of the mitotic apparatus in human cells. We found that CENP-E recruits both CLASP1 and CLASP2 to kinetochores independently of its motor activity or the presence of microtubules. Depletion of CLASPs or CENP-E by RNA interference in human cells causes a significant and comparable reduction of kinetochore microtubule poleward flux and turnover rates and rescues spindle bipolarity in Kif2a-depleted cells. We conclude that CENP-E integrates two critical functions that are important for accurate chromosome movement and spindle architecture: one relying directly on its motor activity, and the other involving the targeting of key microtubule regulators to kinetochores.

摘要

在有丝分裂过程中,染色体的高效分离依赖于分子马达与调节动粒与动态纺锤体微管附着的蛋白质的协调活动[1]。CLASPs 是由两个平行基因 clasp1 和 clasp2 编码的保守动粒和微管相关蛋白,先前已被证实参与调节动粒微管动力学[2-4]。然而,CLASPs 如何与其他蛋白质协同作用形成功能性动粒微管界面仍不清楚。在这里,我们通过蛋白质组学方法鉴定了人 CLASP1 的有丝分裂相互作用蛋白。在这些相互作用蛋白中,微管正端定向马达 CENP-E[5]被发现与人细胞中的有丝分裂装置的多种结构共定位,形成与 CLASP1 的复合物。我们发现 CENP-E 独立于其马达活性或微管的存在,将 CLASP1 和 CLASP2 招募到动粒上。在人细胞中通过 RNA 干扰耗尽 CLASPs 或 CENP-E 会导致动粒微管向极的通量和周转率显著且相当的降低,并挽救 Kif2a 耗尽细胞中的纺锤体双极。我们的结论是,CENP-E 整合了两个对准确染色体运动和纺锤体结构很重要的关键功能:一个直接依赖于其马达活性,另一个涉及将关键微管调节剂靶向到动粒上。

相似文献

引用本文的文献

5
An unconventional TOG domain is required for CLASP localization.非典型的 TOG 结构域对于 CLASP 的定位是必需的。
Curr Biol. 2023 Aug 21;33(16):3522-3528.e7. doi: 10.1016/j.cub.2023.07.009. Epub 2023 Jul 28.
6
Mechanisms underlying spindle assembly and robustness.纺锤体组装和稳定性的机制。
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.

本文引用的文献

4
5
Plk4-induced centriole biogenesis in human cells.人细胞中Plk4诱导的中心粒生物发生。
Dev Cell. 2007 Aug;13(2):190-202. doi: 10.1016/j.devcel.2007.07.002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验