Suppr超能文献

简化药物识别专家识别药物组合的过程。

Simplifying the process for identifying drug combinations by drug recognition experts.

机构信息

Canadian Centre on Substance Abuse, Ottawa, Ontario, Canada.

出版信息

Traffic Inj Prev. 2010 Oct;11(5):453-9. doi: 10.1080/15389588.2010.489199.

Abstract

OBJECTIVE

The purpose of this study is to statistically identify the set of drug-related cues from Drug Evaluation and Classification (DEC) evaluations that significantly predict the categories of drugs used by suspected drug-impaired drivers.

METHODS

Data from 819 completed Canadian DEC evaluations of combinations of central nervous system (CNS) stimulants with cannabis, CNS stimulants with narcotic analgesics, cannabis with alcohol, and no-drug cases were analyzed using a multinomial logistic regression procedure.

RESULTS

Eleven clinical indicators from the DEC evaluations significantly enhanced the prediction of drugs used by suspected drug-impaired drivers, including condition of the eyes, lack of convergence, rebound dilation, reaction to light, mean pulse rate, presence of visible injection sites, performance on the Horizontal Gaze Nystagmus Test, pupil size in darkness, performance on the One-Leg Stand Test, muscle tone, and performance on the Walk-and-Turn Test.

CONCLUSIONS

The findings from this study will facilitate the process of identifying the correct categories of drugs ingested by suspected drug-impaired drivers by focusing on critical signs and symptoms of drug influence. This work will have direct and immediate relevance to the training of drug recognition experts (DREs) by providing the foundation for an innovative, statistically based approach to drug classification decisions by DREs. This research will also facilitate the enforcement of drug-impaired driving laws in Canada to help make Canadian roadways safer for all.

摘要

目的

本研究旨在通过统计方法确定从药物评估和分类(DEC)评估中提取的与药物相关的线索,这些线索可显著预测疑似药物滥用驾驶员使用的药物类别。

方法

使用多项逻辑回归程序分析了来自 819 例加拿大 DEC 评估的组合数据,这些评估涉及中枢神经系统(CNS)兴奋剂与大麻、CNS 兴奋剂与麻醉性镇痛药、大麻与酒精以及无药物案例。

结果

DEC 评估中的 11 个临床指标显著提高了对疑似药物滥用驾驶员使用药物的预测能力,包括眼睛状况、会聚缺乏、反弹扩张、对光的反应、平均脉搏率、可见注射部位的存在、水平凝视眼球震颤测试的表现、黑暗中小孔大小、单腿站立测试的表现、肌肉张力和行走转弯测试的表现。

结论

本研究的结果将通过关注药物影响的关键体征和症状,促进识别疑似药物滥用驾驶员摄入的正确药物类别的过程。这项工作将通过为药物识别专家(DRE)提供创新的、基于统计学的药物分类决策方法的基础,直接且直接地影响 DRE 的培训。这项研究还将有助于在加拿大执行药物驾驶法,以帮助使加拿大的道路对所有人更加安全。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验