Shen Li, Qi Yuan, Kim Sungeun, Nho Kwangsik, Wan Jing, Risacher Shannon L, Saykin Andrew J
Center for Neuroimaging, Department of Radiology and Imaging Sciences, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):611-8. doi: 10.1007/978-3-642-15711-0_76.
We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer's disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures.
我们将稀疏贝叶斯学习方法、自动相关性确定(ARD)和预测性ARD(PARD)应用于阿尔茨海默病(AD)分类,以进行准确预测并同时识别与AD相关的关键影像标志物。ARD是最成功的贝叶斯特征选择方法之一。PARD是一种强大的贝叶斯特征选择方法,可提供易于解释的稀疏模型。PARD选择对预测性能估计最佳的模型,而不是选择边际模型似然最大的模型。与支持向量机(SVM)的比较研究表明,ARD/PARD在预测准确性方面总体上优于SVM。与基于表面的一般线性模型(GLM)分析的进一步比较表明,GLM和ARD/PARD都能识别出信号最强的区域。虽然GLM的P图在整个皮质中都返回了显著区域,但ARD/PARD提供了少量具有预测能力的相关且有意义的影像标志物,包括皮质和皮质下测量值。