Suppr超能文献

用于在AD预测中识别影像生物标志物的稀疏贝叶斯学习

Sparse bayesian learning for identifying imaging biomarkers in AD prediction.

作者信息

Shen Li, Qi Yuan, Kim Sungeun, Nho Kwangsik, Wan Jing, Risacher Shannon L, Saykin Andrew J

机构信息

Center for Neuroimaging, Department of Radiology and Imaging Sciences, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 3):611-8. doi: 10.1007/978-3-642-15711-0_76.

Abstract

We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer's disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures.

摘要

我们将稀疏贝叶斯学习方法、自动相关性确定(ARD)和预测性ARD(PARD)应用于阿尔茨海默病(AD)分类,以进行准确预测并同时识别与AD相关的关键影像标志物。ARD是最成功的贝叶斯特征选择方法之一。PARD是一种强大的贝叶斯特征选择方法,可提供易于解释的稀疏模型。PARD选择对预测性能估计最佳的模型,而不是选择边际模型似然最大的模型。与支持向量机(SVM)的比较研究表明,ARD/PARD在预测准确性方面总体上优于SVM。与基于表面的一般线性模型(GLM)分析的进一步比较表明,GLM和ARD/PARD都能识别出信号最强的区域。虽然GLM的P图在整个皮质中都返回了显著区域,但ARD/PARD提供了少量具有预测能力的相关且有意义的影像标志物,包括皮质和皮质下测量值。

相似文献

6
Multi-modality canonical feature selection for Alzheimer's disease diagnosis.用于阿尔茨海默病诊断的多模态规范特征选择
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):162-9. doi: 10.1007/978-3-319-10470-6_21.
7
Sparse bayesian learning of filters for efficient image expansion.滤波器的稀疏贝叶斯学习用于高效图像扩展。
IEEE Trans Image Process. 2010 Jun;19(6):1480-90. doi: 10.1109/TIP.2010.2043010. Epub 2010 Mar 8.
9
Multifold Bayesian kernelization in Alzheimer's diagnosis.阿尔茨海默病诊断中的多重贝叶斯核化
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):303-10. doi: 10.1007/978-3-642-40763-5_38.

引用本文的文献

6
Empowering imaging biomarkers of Alzheimer's disease.增强阿尔茨海默病的影像学生物标志物
Neurobiol Aging. 2015 Jan;36 Suppl 1:S69-80. doi: 10.1016/j.neurobiolaging.2014.05.038. Epub 2014 Aug 27.

本文引用的文献

6
8
The Alzheimer's disease neuroimaging initiative.阿尔茨海默病神经影像学计划。
Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii. doi: 10.1016/j.nic.2005.09.008.
9
Detecting changes in nonisotropic images.检测非各向同性图像中的变化。
Hum Brain Mapp. 1999;8(2-3):98-101. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验