McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
Int J Comput Assist Radiol Surg. 2011 Jul;6(4):507-22. doi: 10.1007/s11548-010-0535-3. Epub 2010 Oct 1.
PURPOSE: The aim of this report is to present IBIS (Interactive Brain Imaging System) NeuroNav, a new prototype neuronavigation system that has been developed in our research laboratory over the past decade that uses tracked intraoperative ultrasound to address surgical navigation issues related to brain shift. The unique feature of the system is its ability, when needed, to improve the initial patient-to-preoperative image alignment based on the intraoperative ultrasound data. Parts of IBIS Neuronav source code are now publicly available on-line. METHODS: Four aspects of the system are characterized in this paper: the ultrasound probe calibration, the temporal calibration, the patient-to-image registration and the MRI-ultrasound registration. In order to characterize its real clinical precision and accuracy, the system was tested in a series of adult brain tumor cases. RESULTS: Three metrics were computed to evaluate the precision and accuracy of the ultrasound calibration. 1) Reproducibility: 1.77 mm and 1.65 mm for the bottom corners of the ultrasound image, 2) point reconstruction precision 0.62-0.90 mm: and 3) point reconstruction accuracy: 0.49-0.74 mm. The temporal calibration error was estimated to be 0.82 ms. The mean fiducial registration error (FRE) of the homologous-point-based patient-to-MRI registration for our clinical data is 4.9 ± 1.1 mm. After the skin landmark-based registration, the mean misalignment between the ultrasound and MR images in the tumor region is 6.1 ± 3.4 mm. CONCLUSIONS: The components and functionality of a new prototype system are described and its precision and accuracy evaluated. It was found to have an accuracy similar to other comparable systems in the literature.
目的:本报告旨在介绍 IBIS(交互式脑成像系统)NeuroNav,这是我们研究实验室在过去十年中开发的一种新型原型神经导航系统,它使用术中跟踪超声来解决与脑移位相关的手术导航问题。该系统的独特之处在于,它能够根据术中超声数据在需要时改进初始患者与术前图像的配准。IBIS 神经导航的部分源代码现在可在线公开获取。
方法:本文对系统的四个方面进行了描述:超声探头校准、时间校准、患者到图像的配准以及 MRI-超声配准。为了表征其实际临床精度和准确性,该系统在一系列成人脑肿瘤病例中进行了测试。
结果:为了评估超声校准的精度和准确性,计算了三个度量值。1)可重复性:超声图像底部角的 1.77mm 和 1.65mm,2)点重建精度 0.62-0.90mm:和 3)点重建准确性:0.49-0.74mm。时间校准误差估计为 0.82ms。对于我们的临床数据,基于同源点的患者到 MRI 配准的平均标志点配准误差(FRE)为 4.9±1.1mm。在进行皮肤标志点配准后,超声和磁共振图像在肿瘤区域的平均错位为 6.1±3.4mm。
结论:描述了一种新型原型系统的组件和功能,并评估了其精度和准确性。发现其准确性与文献中其他可比系统相似。
Int J Comput Assist Radiol Surg. 2010-10-1
Int J Comput Assist Radiol Surg. 2016-8-31
Minim Invasive Neurosurg. 2006-8
Surg Neurol. 2006-12
Comput Aided Surg. 2002
Micromachines (Basel). 2022-10-29
Int J Comput Assist Radiol Surg. 2021-8
Neurosurg Clin N Am. 2021-1
Neuroimage Clin. 2019-10-23
Ann Clin Transl Neurol. 2019-5-3
J Med Imaging (Bellingham). 2018-4
Int J Comput Assist Radiol Surg. 2016-8-31
Proc Inst Mech Eng H. 2010
Wien Med Wochenschr. 1947-10-4
IEEE Trans Med Imaging. 1994
Med Image Anal. 2007-12
Ultrasound Med Biol. 2007-7