Suppr超能文献

纤维蛋白力学性能的分子起源。

The molecular origins of the mechanical properties of fibrin.

机构信息

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Biophys Chem. 2010 Nov;152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009.

Abstract

When normal blood circulation is compromised by damage to vessel walls, clots are formed at the site of injury. These clots prevent bleeding and support wound healing. To sustain such physiological functions, clots are remarkably extensible and elastic. Fibrin fibers provide the supporting framework of blood clots, and the properties of these fibers underlie the mechanical properties of clots. Recent studies, which examined individual fibrin fibers or cylindrical fibrin clots, have shown that the mechanical properties of fibrin depend on the mechanical properties of the individual fibrin monomers. Within the fibrin monomer, three structures could contribute to these properties: the coiled-coil connectors the folded globular nodules and the relatively unstructured αC regions. Experimental data suggest that each of these structures contributes. Here we review the recent work with a focus on the molecular origins of the remarkable biomechanical properties of fibrin clots.

摘要

当血管壁受损导致正常血液循环受到影响时,血液会在损伤部位凝结。这些凝块可以防止出血并促进伤口愈合。为了维持这种生理功能,凝块具有显著的可伸展性和弹性。纤维蛋白纤维为血栓提供了支撑框架,而这些纤维的特性则决定了血栓的机械性能。最近的研究表明,研究单个纤维蛋白纤维或圆柱形纤维蛋白凝块时,纤维蛋白的机械性能取决于单个纤维蛋白单体的机械性能。在纤维蛋白单体中,有三种结构可能对这些特性有贡献:卷曲螺旋连接器、折叠的球状结节和相对无结构的αC 区域。实验数据表明,这些结构都有贡献。本文综述了最近的工作,重点介绍了纤维蛋白凝块显著的生物力学特性的分子起源。

相似文献

1
The molecular origins of the mechanical properties of fibrin.
Biophys Chem. 2010 Nov;152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009.
2
Fibrinogen αC-region acts as a functional safety latch: Implications for a fibrin biomechanical behaviour model.
Acta Biomater. 2024 Nov;189:179-191. doi: 10.1016/j.actbio.2024.10.005. Epub 2024 Oct 10.
4
Fibrinogen and fibrin.
Adv Protein Chem. 2005;70:247-99. doi: 10.1016/S0065-3233(05)70008-5.
6
Fibrin mechanical properties and their structural origins.
Matrix Biol. 2017 Jul;60-61:110-123. doi: 10.1016/j.matbio.2016.08.003. Epub 2016 Aug 20.
7
A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers.
Biophys J. 2012 Oct 3;103(7):1537-44. doi: 10.1016/j.bpj.2012.08.038. Epub 2012 Oct 2.
8
Mechanism of fibrin(ogen) forced unfolding.
Structure. 2011 Nov 9;19(11):1615-24. doi: 10.1016/j.str.2011.08.013.
9
Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks.
Adv Healthc Mater. 2023 Oct;12(27):e2300096. doi: 10.1002/adhm.202300096. Epub 2023 Aug 31.
10
Molecular basis of fibrin clot elasticity.
Structure. 2008 Mar;16(3):449-59. doi: 10.1016/j.str.2007.12.019. Epub 2008 Feb 21.

引用本文的文献

1
Hyperelasticity of blood clots: Bridging the gap between microscopic and continuum scales.
J Mech Phys Solids. 2024 Sep;190. doi: 10.1016/j.jmps.2024.105750. Epub 2024 Jun 20.
2
Structural Mechanisms of Forced Unfolding of Double-Stranded Fibrin Oligomers.
J Phys Chem B. 2025 Apr 24;129(16):3963-3977. doi: 10.1021/acs.jpcb.5c00755. Epub 2025 Apr 14.
3
Recent Research Progress of Wound Healing Biomaterials Containing Platelet-Rich Plasma.
Int J Nanomedicine. 2025 Mar 31;20:3961-3976. doi: 10.2147/IJN.S506677. eCollection 2025.
4
Rupture mechanics of blood clot fibrin fibers: A coarse-grained model study.
J Mech Phys Solids. 2025 Mar;196. doi: 10.1016/j.jmps.2024.105998. Epub 2024 Dec 2.
5
Engineered Recombinant Hagfish Intermediate Filament Proteins: Unraveling Domain Roles in Synthetic Fiber Formation and Mechanics.
ACS Omega. 2024 Nov 14;9(47):47023-47030. doi: 10.1021/acsomega.4c06950. eCollection 2024 Nov 26.
6
Method to obtain a plasma rich in platelet- and plasma-growth factors based on water evaporation.
PLoS One. 2024 Feb 21;19(2):e0297001. doi: 10.1371/journal.pone.0297001. eCollection 2024.
7
Mechanical Evaluation of Commercially Available Fibrin Sealants for Cartilage Repair.
Cartilage. 2024 Jun;15(2):147-155. doi: 10.1177/19476035231163273. Epub 2023 Mar 27.
8
Advances in Fibrin-Based Materials in Wound Repair: A Review.
Molecules. 2022 Jul 14;27(14):4504. doi: 10.3390/molecules27144504.
9
Structural control of fibrin bioactivity by mechanical deformation.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2117675119. doi: 10.1073/pnas.2117675119. Epub 2022 May 25.
10
Regulation of biomaterial implantation-induced fibrin deposition to immunological functions of dendritic cells.
Mater Today Bio. 2022 Feb 26;14:100224. doi: 10.1016/j.mtbio.2022.100224. eCollection 2022 Mar.

本文引用的文献

1
Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.
Biophys J. 2010 Apr 21;98(8):1632-40. doi: 10.1016/j.bpj.2009.12.4312.
2
The mechanical properties of single fibrin fibers.
J Thromb Haemost. 2010 May;8(5):1030-6. doi: 10.1111/j.1538-7836.2010.03745.x. Epub 2010 Jan 17.
4
Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water.
Science. 2009 Aug 7;325(5941):741-4. doi: 10.1126/science.1172484.
6
Crystal structure of human fibrinogen.
Biochemistry. 2009 May 12;48(18):3877-86. doi: 10.1021/bi802205g.
7
Recommendations for nomenclature on fibrinogen and fibrin.
J Thromb Haemost. 2009 Feb;7(2):355-9. doi: 10.1111/j.1538-7836.2008.03242.x. Epub 2008 Nov 25.
8
Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots.
Blood Coagul Fibrinolysis. 2008 Dec;19(8):765-70. doi: 10.1097/MBC.0b013e32830f1b68.
9
Fibrin gels and their clinical and bioengineering applications.
J R Soc Interface. 2009 Jan 6;6(30):1-10. doi: 10.1098/rsif.2008.0327.
10
Length of tandem repeats in fibrin's alphaC region correlates with fiber extensibility.
J Thromb Haemost. 2008 Nov;6(11):1991-3. doi: 10.1111/j.1538-7836.2008.03147.x. Epub 2008 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验