Suppr超能文献

纤维蛋白单纤维的僵硬使应变均匀分布并增强网络。

Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.

机构信息

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Biophys J. 2010 Apr 21;98(8):1632-40. doi: 10.1016/j.bpj.2009.12.4312.

Abstract

As the structural backbone of blood clots, fibrin networks carry out the mechanical task of stemming blood flow at sites of vascular injury. These networks exhibit a rich set of remarkable mechanical properties, but a detailed picture relating the microscopic mechanics of the individual fibers to the overall network properties has not been fully developed. In particular, how the high strain and failure characteristics of single fibers affect the overall strength of the network is not known. Using a combined fluorescence/atomic force microscope nanomanipulation system, we stretched 2-D fibrin networks to the point of failure, while recording the strain of individual fibers. Our results were compared to a pair of model networks: one composed of linearly responding elements and a second of nonlinear, strain-stiffening elements. We find that strain-stiffening of the individual fibers is necessary to explain the pattern of strain propagation throughout the network that we observe in our experiments. Fiber strain-stiffening acts to distribute strain more equitably within the network, reduce strain maxima, and increase network strength. Along with its physiological implications, a detailed understanding of this strengthening mechanism may lead to new design strategies for engineered polymeric materials.

摘要

作为血栓的结构骨干,纤维蛋白网络执行着阻止血管损伤部位血流的机械任务。这些网络表现出一系列丰富的显著机械性能,但将单个纤维的微观力学与整体网络特性联系起来的详细情况尚未完全阐明。特别是,单根纤维的高应变和失效特性如何影响网络的整体强度尚不清楚。使用荧光/原子力显微镜纳米操纵系统,我们将 2-D 纤维蛋白网络拉伸至失效点,同时记录单个纤维的应变。我们的结果与一对模型网络进行了比较:一个由线性响应元件组成,另一个由非线性、应变硬化元件组成。我们发现,单个纤维的应变硬化对于解释我们在实验中观察到的网络中应变传播模式是必要的。纤维应变硬化的作用是在网络内更均匀地分布应变,降低应变最大值,并提高网络强度。除了其生理意义外,对这种强化机制的详细了解可能会为工程聚合物材料的新设计策略提供依据。

相似文献

5
Multi-scale strain-stiffening of semiflexible bundle networks.半柔性束状网络的多尺度应变强化
Soft Matter. 2016 Feb 21;12(7):2145-56. doi: 10.1039/c5sm01992c. Epub 2016 Jan 13.
6
The mechanical properties of single fibrin fibers.单根纤维蛋白纤维的力学性能。
J Thromb Haemost. 2010 May;8(5):1030-6. doi: 10.1111/j.1538-7836.2010.03745.x. Epub 2010 Jan 17.

引用本文的文献

3
Structural Mechanisms of Forced Unfolding of Double-Stranded Fibrin Oligomers.双链纤维蛋白寡聚体强制解折叠的结构机制
J Phys Chem B. 2025 Apr 24;129(16):3963-3977. doi: 10.1021/acs.jpcb.5c00755. Epub 2025 Apr 14.
4
Deconstructing fibrin(ogen) structure.解析纤维蛋白(原)结构。
J Thromb Haemost. 2025 Feb;23(2):368-380. doi: 10.1016/j.jtha.2024.10.024. Epub 2024 Nov 12.
8
Fluorescent microspheres can affect in vitro fibrinolytic outcomes.荧光微球会影响体外纤维蛋白溶解的结果。
PLoS One. 2023 Apr 7;18(4):e0284163. doi: 10.1371/journal.pone.0284163. eCollection 2023.

本文引用的文献

1
Thermal fluctuations of fibres at short time scales.短时间尺度下纤维的热涨落。
Soft Matter. 2008 Jun 20;4(7):1438-1442. doi: 10.1039/b802555j.
8
Molecular basis of fibrin clot elasticity.纤维蛋白凝块弹性的分子基础。
Structure. 2008 Mar;16(3):449-59. doi: 10.1016/j.str.2007.12.019. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验