Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):670-82. doi: 10.1002/wsbm.94.
Branching morphogenesis is a crucial developmental process in which vertebrate organs generate extensive epithelial surface area while retaining a compact size. In the vertebrate submandibular salivary gland, branching morphogenesis is crucial for the generation of the large surface area necessary to produce sufficient saliva. However, in many salivary gland diseases, saliva-producing acinar cells are destroyed, resulting in dry mouth and secondary health conditions. Systems-based approaches can provide insights into understanding salivary gland development, function, and disease. The traditional approach to understanding these processes is the identification of molecular signals using reductionist approaches; we review current progress with such methods in understanding salivary gland development. Taking a more global approach, multiple groups are currently profiling the transcriptome, the proteome, and other 'omes' in both developing mouse tissues and in human patient samples. Computational methods have been successful in deciphering large data sets, and mathematical models are starting to make predictions regarding the contribution of molecules to the physical processes of morphogenesis and cellular function. A challenge for the future will be to establish comprehensive, publicly accessible salivary gland databases spanning the full range of genes and proteins; plans are underway to provide these resources to researchers in centralized repositories. The greatest challenge for the future will be to develop realistic models that integrate multiple types of data to both describe and predict embryonic development and disease pathogenesis.
分支形态发生是一个关键的发育过程,在此过程中,脊椎动物器官在保持紧凑尺寸的同时产生广泛的上皮表面区域。在脊椎动物下颌下唾液腺中,分支形态发生对于产生产生足够唾液所需的大表面积至关重要。然而,在许多唾液腺疾病中,产生唾液的腺泡细胞被破坏,导致口干和继发性健康状况。基于系统的方法可以深入了解唾液腺的发育、功能和疾病。理解这些过程的传统方法是使用还原论方法鉴定分子信号;我们回顾了当前使用这些方法理解唾液腺发育的最新进展。采取更全局的方法,多个小组目前正在对发育中的小鼠组织和人类患者样本中的转录组、蛋白质组和其他“组学”进行分析。计算方法在破译大型数据集方面取得了成功,数学模型开始对分子对形态发生和细胞功能的物理过程的贡献进行预测。未来的挑战将是建立全面的、可公开访问的唾液腺数据库,涵盖所有基因和蛋白质;目前正在计划将这些资源提供给中央存储库中的研究人员。未来最大的挑战将是开发现实的模型,将多种类型的数据集成在一起,以描述和预测胚胎发育和疾病发病机制。