Suppr超能文献

两栖类运动神经元突触后兴奋的机制。

Mechanisms of post-synaptic excitation in amphibian motoneurones.

作者信息

Shapovalov A I, Shiriaev B I, Velumian A A

出版信息

J Physiol. 1978 Jun;279:437-55. doi: 10.1113/jphysiol.1978.sp012355.

Abstract
  1. Post-synaptic excitation produced in motoneurones of the isolated perfused frog spinal cord by different monosynaptic inputs and by ionophoretically applied glutamate was analysed with intracellular recording technique. 2. Ca2+-deficient, high Mg2+ (5--20 mM) media or addition of Mn2+ (2mM) or Co2+ (5 mM) reversibly abolished chemically mediated e.p.s.p.s derived from medullary reticular formation, ventral and lateral columns, but not the short-latency, rapidly rising e.p.s.p.s derived from dorsal roots or muscle nerves, suggesting electric coupling between some primary afferents and spinal motoneurones. This conclusion is consistent with the dynamic properties of dorsal root e.p.s.p.s, their small sensitivity to cooling, and with results of correction of intracellular records made for contribution of extracellular field potential. E.p.s.p.s evoked by ventral root stimulation were also insensitive to Ca2+-lack and presence of 5--10 mM-Mg2+. 3. As the post-synaptic membrane was made more negative the amplitude of electrotonic dorsal root e.p.s.p.s was increased, and it was decreased by depolarizing currents. No reversal of the early part of the electrotonic e.p.s.p. was observed, although the presence of the local response would account for the occasional reversal of its later phase seen with depolarization. 4. When hyperpolarizing and depolarizing currents were applied to motoneurones in which chemically mediated e.p.s.p.s of the reticular cells, the ventral and lateral columns, were evoked, the actual reversal of the early part of e.p.s.p. was not observed, and there was no correlation between the sensitivity of the e.p.s.p.s to injected currents and their time course. The positive values of the extrapolated reversal potentials and the effects of changes in ionic content of perfusing media suggest that synaptically released transmitter triggers off the Na permeability of the subsynaptic membrane. 5. The amplitude of depolarization produced by ionophoretically applied glutamate depends non-linearly on membrane potential and the curvature of this dependence differs from that seen with chemically mediated s.p.s.p.s. The asymptotic nature of this relationship is explicable by a dependence of the membrane conductance change upon the membrane voltage. 6. The results of conductance measurements during the glutamate induced depolarization, the values of apparent reversal potentials and their dependence on external Na+ and K+ and internal Cl- is explicable by the opening post-synaptic channel gates for Na+ and closing post-synaptic channel gates for K+. 7. Chemical and electrical transmission in the amphibian cord is discussed in relation to recent anatomical findings.
摘要
  1. 采用细胞内记录技术,分析了不同单突触输入以及离子电泳施加谷氨酸对离体灌注青蛙脊髓运动神经元产生的突触后兴奋。2. 缺乏Ca2+、高Mg2+(5 - 20 mM)的培养基,或添加Mn2+(2 mM)或Co2+(5 mM),可使源自延髓网状结构、腹侧和外侧柱的化学介导的兴奋性突触后电位(e.p.s.p.s)可逆性消失,但不会使源自背根或肌肉神经的短潜伏期、快速上升的e.p.s.p.s消失,这表明一些初级传入神经与脊髓运动神经元之间存在电耦合。这一结论与背根e.p.s.p.s的动态特性、它们对冷却的低敏感性以及校正细胞外场电位对细胞内记录贡献的结果一致。腹根刺激诱发的e.p.s.p.s对缺乏Ca2+和存在5 - 10 mM Mg2+也不敏感。3. 随着突触后膜电位变得更负,电紧张性背根e.p.s.p.s的幅度增大,而去极化电流可使其减小。未观察到电紧张性e.p.s.p.早期部分的反转,尽管局部反应的存在可解释去极化时偶尔出现的后期反转。4. 当对能诱发网状细胞、腹侧和外侧柱化学介导的e.p.s.p.s的运动神经元施加超极化和去极化电流时,未观察到e.p.s.p.早期部分的实际反转,且e.p.s.p.s对注入电流的敏感性与其时间进程之间无相关性。外推反转电位的正值以及灌注培养基离子含量变化的影响表明,突触释放的递质触发了突触后膜的Na通透性。5. 离子电泳施加谷氨酸产生的去极化幅度非线性地依赖于膜电位,且这种依赖性的曲线与化学介导的突触后电位(s.p.s.p.s)不同。这种关系的渐近性质可通过膜电导变化对膜电压的依赖性来解释。6. 谷氨酸诱导去极化期间的电导测量结果、表观反转电位的值及其对外部Na+和K+以及内部Cl-的依赖性,可通过突触后Na通道门的开放和突触后K通道门的关闭来解释。7. 结合最近的解剖学发现,讨论了两栖动物脊髓中的化学和电传递。

相似文献

1
Mechanisms of post-synaptic excitation in amphibian motoneurones.
J Physiol. 1978 Jun;279:437-55. doi: 10.1113/jphysiol.1978.sp012355.
2
Effects of some divalent cations on synaptic transmission in frog spinal neurones.
J Physiol. 1979 Sep;294:387-406. doi: 10.1113/jphysiol.1979.sp012936.
5
Electrophysiological properties of neonatal rat motoneurones studied in vitro.
J Physiol. 1986 Jan;370:651-78. doi: 10.1113/jphysiol.1986.sp015956.
8
Physiological and anatomical characteristics of reticulospinalneurones in lamprey.
J Physiol. 1977 Aug;270(1):89-114. doi: 10.1113/jphysiol.1977.sp011940.
9
Synaptic physiology of spinal motoneurones of normal and spastic mice: an in vitro study.
J Physiol. 1986 Oct;379:275-92. doi: 10.1113/jphysiol.1986.sp016253.
10
Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
J Physiol. 1979 May;290(2):113-27. doi: 10.1113/jphysiol.1979.sp012763.

引用本文的文献

1
Electrical synapses in mammalian CNS: Past eras, present focus and future directions.
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):102-123. doi: 10.1016/j.bbamem.2017.05.019. Epub 2017 Jun 1.
2
Cellular and synaptic actions of acetylcholine in the lamprey spinal cord.
J Neurophysiol. 2008 Aug;100(2):1020-31. doi: 10.1152/jn.01157.2007. Epub 2008 Jun 11.
3
Depression of activity in the corticospinal pathway during human motor behavior after strong voluntary contractions.
J Neurosci. 2003 Sep 3;23(22):7974-80. doi: 10.1523/JNEUROSCI.23-22-07974.2003.
4
Excitation of hippocampal pyramidal cells by glutamate in the guinea-pig and rat.
J Physiol. 1982 Apr;325:317-31. doi: 10.1113/jphysiol.1982.sp014152.
5
On the postsynaptic action of glutamate in frog spinal motoneurons.
Pflugers Arch. 1980 Nov;388(2):101-9. doi: 10.1007/BF00584115.
9
Development of sensory-motor synapses in the spinal cord of the frog.
J Physiol. 1983 Oct;343:593-610. doi: 10.1113/jphysiol.1983.sp014912.

本文引用的文献

1
RECURRENT FACILITATION OF FROG MOTONEURONS.
J Neurophysiol. 1963 Nov;26:877-93. doi: 10.1152/jn.1963.26.6.877.
2
A STUDY OF SPONTANEOUS MINIATURE POTENTIALS IN SPINAL MOTONEURONES.
J Physiol. 1963 Sep;168(2):389-422. doi: 10.1113/jphysiol.1963.sp007199.
3
Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons.
J Gen Physiol. 1961 Nov;45(2):267-308. doi: 10.1085/jgp.45.2.267.
4
Monosynaptic activation of different portions of the motor neuron membrane.
Am J Physiol. 1960 Apr;198:693-703. doi: 10.1152/ajplegacy.1960.198.4.693.
5
Potential field initiated during monosynaptic activation of frog motoneurones.
J Physiol. 1960 Mar;150(3):633-55. doi: 10.1113/jphysiol.1960.sp006409.
6
Transmission at the giant motor synapses of the crayfish.
J Physiol. 1959 Mar 3;145(2):289-325. doi: 10.1113/jphysiol.1959.sp006143.
7
Stimulation of spinal motoneurones with intracellular electrodes.
J Physiol. 1956 Nov 28;134(2):451-70. doi: 10.1113/jphysiol.1956.sp005657.
9
A study of the interaction between motoneurones in the frog spinal cord.
J Physiol. 1966 Feb;182(3):612-48. doi: 10.1113/jphysiol.1966.sp007841.
10
Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog.
Brain Res. 1970 Jan 6;17(1):137-41. doi: 10.1016/0006-8993(70)90315-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验