Suppr超能文献

脑发育过程中的网络级结构协变。

Network-level structural covariance in the developing brain.

机构信息

Department of Neurology, University of California, San Francisco, CA 94143-0114, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18191-6. doi: 10.1073/pnas.1003109107. Epub 2010 Oct 4.

Abstract

Intrinsic or resting state functional connectivity MRI and structural covariance MRI have begun to reveal the adult human brain's multiple network architectures. How and when these networks emerge during development remains unclear, but understanding ontogeny could shed light on network function and dysfunction. In this study, we applied structural covariance MRI techniques to 300 children in four age categories (early childhood, 5-8 y; late childhood, 8.5-11 y; early adolescence, 12-14 y; late adolescence, 16-18 y) to characterize gray matter structural relationships between cortical nodes that make up large-scale functional networks. Network nodes identified from eight widely replicated functional intrinsic connectivity networks served as seed regions to map whole-brain structural covariance patterns in each age group. In general, structural covariance in the youngest age group was limited to seed and contralateral homologous regions. Networks derived using primary sensory and motor cortex seeds were already well-developed in early childhood but expanded in early adolescence before pruning to a more restricted topology resembling adult intrinsic connectivity network patterns. In contrast, language, social-emotional, and other cognitive networks were relatively undeveloped in younger age groups and showed increasingly distributed topology in older children. The so-called default-mode network provided a notable exception, following a developmental trajectory more similar to the primary sensorimotor systems. Relationships between functional maturation and structural covariance networks topology warrant future exploration.

摘要

内源性或静息态功能磁共振成像和结构协变磁共振成像已经开始揭示成人大脑的多种网络架构。这些网络在发育过程中是如何以及何时出现的尚不清楚,但了解其发生发展过程可能有助于揭示网络的功能和功能障碍。在这项研究中,我们应用结构协变磁共振成像技术对四个年龄组(幼儿期,5-8 岁;儿童晚期,8.5-11 岁;青少年早期,12-14 岁;青少年晚期,16-18 岁)的 300 名儿童进行了研究,以描述构成大规模功能网络的皮质节点之间的灰质结构关系。从八个广泛复制的功能内源性连接网络中识别出的网络节点作为种子区域,以绘制每个年龄组的全脑结构协变模式。一般来说,在年龄最小的组中,结构协方差仅限于种子和对侧同源区域。使用初级感觉和运动皮层种子获得的网络在幼儿期已经发育良好,但在青春期早期扩展,然后修剪为更接近成人内源性连接网络模式的更受限拓扑。相比之下,语言、社会情感和其他认知网络在年幼的年龄组中相对不发达,在年龄较大的儿童中表现出越来越分散的拓扑结构。所谓的默认模式网络提供了一个显著的例外,其发展轨迹与主要感觉运动系统更为相似。功能成熟与结构协变网络拓扑之间的关系值得进一步研究。

相似文献

1
Network-level structural covariance in the developing brain.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18191-6. doi: 10.1073/pnas.1003109107. Epub 2010 Oct 4.
2
Structural and Maturational Covariance in Early Childhood Brain Development.
Cereb Cortex. 2017 Mar 1;27(3):1795-1807. doi: 10.1093/cercor/bhw022.
3
Age-related changes in brain structural covariance networks.
Front Hum Neurosci. 2013 Mar 26;7:98. doi: 10.3389/fnhum.2013.00098. eCollection 2013.
4
Structural covariance of the default network in healthy and pathological aging.
J Neurosci. 2013 Sep 18;33(38):15226-34. doi: 10.1523/JNEUROSCI.2261-13.2013.
5
Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning.
Neuroimage. 2017 Dec;163:125-149. doi: 10.1016/j.neuroimage.2017.09.025. Epub 2017 Sep 14.
7
Changes in structural and functional connectivity among resting-state networks across the human lifespan.
Neuroimage. 2014 Nov 15;102 Pt 2:345-57. doi: 10.1016/j.neuroimage.2014.07.067. Epub 2014 Aug 7.
8
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
J Neurosci. 2017 Aug 30;37(35):8399-8411. doi: 10.1523/JNEUROSCI.0485-17.2017. Epub 2017 Jul 31.

引用本文的文献

1
Brain morphology network alterations in adolescents with autism spectrum disorder: a sex-stratified study.
bioRxiv. 2025 Aug 28:2025.08.28.672884. doi: 10.1101/2025.08.28.672884.
3
Estimating Brain Similarity Networks With Diffusion MRI.
Hum Brain Mapp. 2025 Aug 1;46(11):e70313. doi: 10.1002/hbm.70313.
4
Assessing quantitative MRI techniques using multimodal comparisons.
PLoS One. 2025 Jul 24;20(7):e0327828. doi: 10.1371/journal.pone.0327828. eCollection 2025.
5
Mapping the microstructure of human cerebral cortex in vivo with diffusion MRI.
Commun Biol. 2025 Jul 22;8(1):1088. doi: 10.1038/s42003-025-08523-9.
6
Exploring the predictive value of structural covariance networks for the diagnosis of schizophrenia.
Front Psychiatry. 2025 Jun 9;16:1570797. doi: 10.3389/fpsyt.2025.1570797. eCollection 2025.
7
Structural covariance analysis for neurodegenerative and neuroinflammatory brain disorders.
Brain. 2025 Sep 3;148(9):3072-3084. doi: 10.1093/brain/awaf151.
8
Smoking alters effective connectivity of resting-state brain networks in mild cognitive impairment.
J Alzheimers Dis. 2025 Jun;105(3):893-903. doi: 10.1177/13872877251333152. Epub 2025 May 4.
10
The structural covariance of reading-related brain regions in adults and children with typical or poor reading skills.
Dev Cogn Neurosci. 2025 Apr;72:101522. doi: 10.1016/j.dcn.2025.101522. Epub 2025 Feb 12.

本文引用的文献

1
Functional-anatomic fractionation of the brain's default network.
Neuron. 2010 Feb 25;65(4):550-62. doi: 10.1016/j.neuron.2010.02.005.
2
Toward discovery science of human brain function.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
3
Sex differences in the adolescent brain.
Brain Cogn. 2010 Feb;72(1):46-55. doi: 10.1016/j.bandc.2009.10.008. Epub 2009 Nov 13.
4
Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging.
Neuroimage. 2010 Jan 15;49(2):1750-9. doi: 10.1016/j.neuroimage.2009.09.051. Epub 2009 Sep 28.
6
Development of large-scale functional brain networks in children.
PLoS Biol. 2009 Jul;7(7):e1000157. doi: 10.1371/journal.pbio.1000157. Epub 2009 Jul 21.
7
Topographical functional connectivity pattern in the perisylvian language networks.
Cereb Cortex. 2010 Mar;20(3):549-60. doi: 10.1093/cercor/bhp119. Epub 2009 Jun 22.
8
Functional brain networks develop from a "local to distributed" organization.
PLoS Comput Biol. 2009 May;5(5):e1000381. doi: 10.1371/journal.pcbi.1000381. Epub 2009 May 1.
9
Neurodegenerative diseases target large-scale human brain networks.
Neuron. 2009 Apr 16;62(1):42-52. doi: 10.1016/j.neuron.2009.03.024.
10
Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6790-5. doi: 10.1073/pnas.0811221106. Epub 2009 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验