Lao Ka Un, Schäffer Rainer, Jansen Georg, Herbert John M
Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.
Fakultät für Chemie, Universität Duisburg-Essen , 45117 Essen, Germany.
J Chem Theory Comput. 2015 Jun 9;11(6):2473-86. doi: 10.1021/ct5010593. Epub 2015 May 4.
Three new data sets for intermolecular interactions, AHB21 for anion-neutral dimers, CHB6 for cation-neutral dimers, and IL16 for ion pairs, are assembled here, with complete-basis CCSD(T) results for each. These benchmarks are then used to evaluate the accuracy of the single-exchange approximation that is used for exchange energies in symmetry-adapted perturbation theory (SAPT), and the accuracy of SAPT based on wave function and density-functional descriptions of the monomers is evaluated. High-level SAPT calculations afford poor results for these data sets, and this includes the recently proposed "gold", "silver", and "bronze standards" of SAPT, namely, SAPT2+(3)-δMP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ, respectively [ Parker , T. M. , et al. , J. Chem. Phys. 2014 , 140 , 094106 ]. Especially poor results are obtained for symmetric shared-proton systems of the form X(-)···H(+)···X(-), for X = F, Cl, or OH. For the anionic data set, the SAPT2+(CCD)-δMP2/aug-cc-pVTZ method exhibits the best performance, with a mean absolute error (MAE) of 0.3 kcal/mol and a maximum error of 0.7 kcal/mol. For the cationic data set, the highest-level SAPT method, SAPT2+3-δMP2/aug-cc-pVQZ, outperforms the rest of the SAPT methods, with a MAE of 0.2 kcal/mol and a maximum error of 0.4 kcal/mol. For the ion-pair data set, the SAPT2+3-δMP2/aug-cc-pVTZ performs the best among all SAPT methods with a MAE of 0.3 kcal/mol and a maximum error of 0.9 kcal/mol. Overall, SAPT2+3-δMP2/aug-cc-pVTZ affords a small and balanced MAE (<0.5 kcal/mol) for all three data sets, with an overall MAE of 0.4 kcal/mol. Despite the breakdown of perturbation theory for ionic systems at short-range, SAPT can still be saved given two corrections: a "δHF" correction, which requires a supermolecular Hartree-Fock calculation to incorporate polarization effects beyond second order, and a "δMP2" correction, which requires a supermolecular MP2 calculation to account for higher-order induction-dispersion coupling. These corrections serve to remove artifacts introduced by the single exchange approximation in the exchange-induction and exchange-dispersion interactions, and obviate the need for ad hoc scaling of the first- and second-order exchange energies. Finally, some density-functional and MP2-based electronic structure methods are assessed as well, and we find that the best density-functional method for computing binding energies in these data sets is B97M-V/aug-cc-pVTZ, which affords a MAE of 0.4 kcal/mol, whereas complete-basis MP2 affords an MAE of 0.3 kcal/mol.
这里汇集了三个用于分子间相互作用的新数据集,分别是用于阴离子 - 中性二聚体的AHB21、用于阳离子 - 中性二聚体的CHB6和用于离子对的IL16,并给出了每个数据集的全基组CCSD(T)结果。然后,这些基准用于评估对称适配微扰理论(SAPT)中用于交换能的单交换近似的准确性,并评估基于单体波函数和密度泛函描述的SAPT的准确性。对于这些数据集,高级SAPT计算结果不佳,这包括最近提出的SAPT的“金”“银”和“青铜标准”,即分别为SAPT2+(3)-δMP2/aug-cc-pVTZ、SAPT2+/aug-cc-pVDZ和sSAPT0/jun-cc-pVDZ [Parker, T. M., et al., J. Chem. Phys. 20, 140, 094106]。对于X = F、Cl或OH的X(-)···H(+)···X(-)形式的对称共享质子体系,结果尤其糟糕。对于阴离子数据集,SAPT2+(CCD)-δMP2/aug-cc-pVTZ方法表现最佳,平均绝对误差(MAE)为0.3 kcal/mol,最大误差为0.7 kcal/mol。对于阳离子数据集,最高级的SAPT方法SAPT2+3-δMP2/aug-cc-pVQZ优于其他SAPT方法,MAE为0.2 kcal/mol,最大误差为0.4 kcal/mol。对于离子对数据集,SAPT2+3-δMP2/aug-cc-pVTZ在所有SAPT方法中表现最佳,MAE为0.3 kcal/mol,最大误差为0.9 kcal/mol。总体而言,SAPT2+3-δMP2/aug-cc-pVTZ对所有三个数据集都提供了小且平衡的MAE(<0.5 kcal/mol),总体MAE为0.4 kcal/mol。尽管微扰理论在短程离子体系中失效,但通过两种校正仍可挽救SAPT:一种“δHF”校正,需要进行超分子Hartree - Fock计算以纳入二阶以上的极化效应;一种“δMP2”校正,需要进行超分子MP2计算以考虑高阶诱导 - 色散耦合。这些校正用于消除单交换近似在交换 - 诱导和交换 - 色散相互作用中引入的伪影,并且无需对一阶和二阶交换能进行特设缩放。最后,还评估了一些基于密度泛函和MP2的电子结构方法,我们发现用于计算这些数据集中结合能的最佳密度泛函方法是B97M - V/aug-cc-pVTZ,其MAE为0.4 kcal/mol,而全基组MP2的MAE为0.3 kcal/mol。