i3 Innovus, Medford, Massachusetts 02155, USA.
Pharmacoeconomics. 2010;28(11):995-1000. doi: 10.2165/11538660-000000000-00000.
Mathematical models are commonly used to predict future benefits of new therapies or interventions in the healthcare setting. The reliability of model results is greatly dependent on accuracy of model inputs but on occasion, data sources may not provide all the required inputs. Therefore, calibration of model inputs to epidemiological endpoints informed by existing data can be a useful tool to ensure credibility of the results.
To compare different computational methods of calibrating a Markov model to US data.
We developed a Markov model that simulates the natural history of human papillomavirus (HPV) infection and subsequent cervical disease in the US. Because the model consists of numerous transition probabilities that cannot be directly estimated from data, calibration to multiple disease endpoints was required to ensure its predictive validity. Goodness of fit was measured as the mean percentage deviation of model-predicted endpoints from target estimates. During the calibration process we used the manual, random and Nelder-Mead calibration methods.
The Nelder-Mead and manual calibration methods achieved the best fit, with mean deviations of 7% and 10%, respectively. Nelder-Mead accomplished this result with substantially less analyst time than the manual method, but required more intensive computing capability. The random search method achieved a mean deviation of 39%, which we considered unacceptable despite the ease of implementation of that method.
The Nelder-Mead and manual techniques may be preferable calibration methods based on both performance and efficiency, provided that sufficient resources are available.
数学模型常用于预测医疗环境中新疗法或干预措施的未来效益。模型结果的可靠性在很大程度上取决于模型输入的准确性,但有时数据源可能无法提供所有必需的输入。因此,根据现有数据对模型输入进行校准以符合流行病学终点,可以是确保结果可信度的有用工具。
比较校准马尔可夫模型以适应美国数据的不同计算方法。
我们开发了一种马尔可夫模型,用于模拟人乳头瘤病毒(HPV)感染在美国的自然史以及随后的宫颈疾病。由于模型包含许多无法直接从数据中估计的转移概率,因此需要校准多个疾病终点以确保其预测有效性。拟合优度的衡量标准是模型预测终点与目标估计值的平均百分比偏差。在校准过程中,我们使用了手动、随机和 Nelder-Mead 校准方法。
Nelder-Mead 和手动校准方法的拟合效果最好,平均偏差分别为 7%和 10%。Nelder-Mead 以比手动方法少得多的分析师时间实现了这一结果,但需要更多的计算能力。随机搜索方法的平均偏差为 39%,尽管该方法易于实施,但我们认为这是不可接受的。
根据性能和效率,Nelder-Mead 和手动技术可能是更好的校准方法,前提是有足够的资源可用。