Department of Ecology and Evolutionary Biology, Yale University.
Mol Biol Evol. 2011 Jan;28(1):825-33. doi: 10.1093/molbev/msq258. Epub 2010 Oct 12.
Rate of recombination is a powerful variable affecting several aspects of molecular variation and evolution. A nonrecombining portion of the genome of most Drosophila species, the "dot" chromosome or F element, exhibits very low levels of variation and unusual codon usage. One lineage of Drosophila, the willistoni/saltans groups, has the F element fused to a normally recombining E element. Here, we present polymorphism data for genes on the F element in two Drosophila willistoni and one D. insularis populations, genes previously studied in D. melanogaster. The D. willistoni populations were known to be very low in inversion polymorphism, thus minimizing the recombination suppression effect of inversions. We first confirmed, by in situ hybridization, that D. insularis has the same E + F fusion as D. willistoni, implying this was a monophyletic event. A clear gradient in codon usage exists along the willistoni F element, from the centromere distally to the fusion with E; estimates of recombination rates parallel this gradient and also indicate D. insularis has greater recombination than D. willistoni. In contrast to D. melanogaster, genes on the F element exhibit moderate levels of nucleotide polymorphism not distinguishable from two genes elsewhere in the genome. Although some linkage disequilibrium (LD) was detected between polymorphic sites within genes (generally <500 bp apart), no long-range LD between F element loci exists in the two willistoni group species. In general, the distribution of allele frequencies of F element genes display the typical pattern of expectations of neutral variation at equilibrium. These results are consistent with the hypothesis that recombination allows the accumulation of nucleotide variation as well as allows selection to act on synonymous codon usage. It is estimated that the fusion occurred ∼20 Mya and while the F element in the willistoni lineage has evolved "normal" levels and patterns of nucleotide variation, equilibrium may not have been reached for codon usage.
重组率是影响分子变异和进化的几个方面的一个强有力的变量。大多数果蝇物种的基因组中没有重组的部分,即“点”染色体或 F 染色体,其变异程度非常低,密码子使用也很不寻常。果蝇的一个谱系——willistoni/saltans 群,其 F 染色体与正常重组的 E 染色体融合。在这里,我们提供了两个 Drosophila willistoni 和一个 D. insularis 群体中 F 染色体上基因的多态性数据,这些基因之前在 D. melanogaster 中进行了研究。已知 D. willistoni 群体的倒位多态性非常低,从而最大限度地减少了倒位对重组的抑制作用。我们首先通过原位杂交证实 D. insularis 与 D. willistoni 具有相同的 E + F 融合,这意味着这是一个单系事件。在 willistoni F 染色体上存在着明显的密码子使用梯度,从着丝粒向远端到与 E 的融合;重组率的估计与这个梯度平行,也表明 D. insularis 的重组率高于 D. willistoni。与 D. melanogaster 不同,F 染色体上的基因表现出中等水平的核苷酸多态性,与基因组其他地方的两个基因没有区别。尽管在基因内的多态性位点之间检测到了一些连锁不平衡(LD)(一般在 500bp 以内),但在这两个 willistoni 群体物种中,F 染色体位点之间不存在长程 LD。一般来说,F 染色体基因的等位基因频率分布呈现出平衡状态下中性变异的典型模式。这些结果与重组允许核苷酸变异积累以及允许选择作用于同义密码子使用的假设是一致的。据估计,融合发生在约 2000 万年前,虽然 willistoni 谱系中的 F 染色体已经进化到具有“正常”水平和模式的核苷酸变异,但密码子使用可能还没有达到平衡。