Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom.
PLoS Genet. 2010 Sep 30;6(9):e1001145. doi: 10.1371/journal.pgen.1001145.
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi.
我们报道了兼性细胞内寄生虫马红球菌的基因组,它是生物技术上重要的放线菌属罗克氏菌中唯一的动物病原体。5.0-Mb 的马红球菌 103S 基因组明显小于环境罗克氏菌的基因组。这是由于非致病性物种通过线性获得同源基因和加速遗传通量而导致基因组扩张,而不是马红球菌的还原进化。103S 基因组缺乏环境罗克氏菌广泛的分解代谢和次生代谢成分,并且它表现出独特的适应宿主定植和竞争的能力,即在富含短链脂肪酸的肠内和草食动物的粪便中——这是马红球菌的两个主要储存库。除了少数水平获得的(HGT)致病性基因座,包括细胞黏附菌毛决定簇(rpl)和在巨噬细胞内存活所需的毒力质粒 vap 致病岛(PAI)外,在马红球菌中鉴定的大多数潜在毒力相关基因在环境罗克氏菌中保守,或在非致病性放线菌中有同源物。这表明一种基于核心放线菌特征的共同选择的毒力进化机制,由关键的宿主生态位适应 HGT 事件触发。我们通过调查马红球菌毒力质粒-染色体相互作用、全局转录谱分析和表达网络分析来验证这一假说。两个在环境罗克氏菌中保守的染色体基因,编码参与芳香族氨基酸生物合成的假定分支酸变位酶和邻氨基苯甲酸合酶酶,与 vap PAI 毒力基因强烈共调控,并且是在巨噬细胞中最佳增殖所必需的。在 HGT 获得的质粒 PAI 控制下的染色体代谢基因的调节整合是马红球菌共选择毒力的重要因素。