Suppr超能文献

网格细胞的扫视速度驱动振荡网络模型

Saccade Velocity Driven Oscillatory Network Model of Grid Cells.

作者信息

Chauhan Ankur, Soman Karthik, Chakravarthy V Srinivasa

机构信息

Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.

出版信息

Front Comput Neurosci. 2019 Jan 10;12:107. doi: 10.3389/fncom.2018.00107. eCollection 2018.

Abstract

Grid cells and place cells are believed to be cellular substrates for the spatial navigation functions of hippocampus as experimental animals physically navigated in 2D and 3D spaces. However, a recent saccade study on head fixated monkey has also reported grid-like representations on saccadic trajectory while the animal scanned the images on a computer screen. We present two computational models that explain the formation of grid patterns on saccadic trajectory formed on the novel Images. The first model named Saccade Velocity Driven Oscillatory Network -Direct PCA (SVDON-DPCA) explains how grid patterns can be generated on saccadic space using Principal Component Analysis (PCA) like learning rule. The model adopts a hierarchical architecture. We extend this to a network model viz. Saccade Velocity Driven Oscillatory Network-Network PCA (SVDON-NPCA) where the direct PCA stage is replaced by a neural network that can implement PCA using a neurally plausible algorithm. This gives the leverage to study the formation of grid cells at a network level. Saccade trajectory for both models is generated based on an attention model which attends to the salient location by computing the saliency maps of the images. Both models capture the spatial characteristics of grid cells such as grid scale variation on the dorso-ventral axis of Medial Entorhinal cortex. Adding one more layer of LAHN over the SVDON-NPCA model predicts the Place cells in saccadic space, which are yet to be discovered experimentally. To the best of our knowledge, this is the first attempt to model grid cells and place cells from saccade trajectory.

摘要

当实验动物在二维和三维空间中进行实际导航时,网格细胞和位置细胞被认为是海马体空间导航功能的细胞基础。然而,最近一项针对头部固定猴子的扫视研究也报告称,在动物扫描电脑屏幕上的图像时,扫视轨迹上存在类似网格的表征。我们提出了两个计算模型,用以解释在新图像上形成的扫视轨迹上的网格模式的形成。第一个模型名为扫视速度驱动振荡网络 - 直接主成分分析(SVDON-DPCA),它解释了如何使用类似主成分分析(PCA)的学习规则在扫视空间中生成网格模式。该模型采用分层架构。我们将其扩展为一个网络模型,即扫视速度驱动振荡网络 - 网络主成分分析(SVDON-NPCA),其中直接主成分分析阶段被一个可以使用神经合理算法实现主成分分析的神经网络所取代。这为在网络层面研究网格细胞的形成提供了便利。两个模型的扫视轨迹都是基于一个注意力模型生成的,该模型通过计算图像的显著性图来关注显著位置。两个模型都捕捉到了网格细胞的空间特征,比如在内侧内嗅皮层背腹轴上的网格尺度变化。在SVDON-NPCA模型上再增加一层LAHN可以预测扫视空间中的位置细胞,这还有待通过实验发现。据我们所知,这是首次尝试从扫视轨迹对网格细胞和位置细胞进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验