Suppr超能文献

基于结构的设计、合成及含苯并恶唑烷酮的 HIV-1 蛋白酶抑制剂的构效关系研究。

Structure-based design, synthesis, and structure-activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones.

机构信息

University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States.

出版信息

J Med Chem. 2010 Nov 11;53(21):7699-708. doi: 10.1021/jm1008743.

Abstract

A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different phenyloxazolidinone P2 ligands were designed and synthesized. Variation of phenyl substitutions at the P2 and P2' moieties significantly affected the binding affinity and antiviral potency of the inhibitors. In general, compounds with 2- and 4-substituted phenyloxazolidinones at P2 exhibited lower binding affinities than 3-substituted analogues. Crystal structure analyses of ligand-enzyme complexes revealed different binding modes for 2- and 3-substituted P2 moieties in the protease S2 binding pocket, which may explain their different binding affinities. Several compounds with 3-substituted P2 moieties demonstrated picomolar binding affinity and low nanomolar antiviral potency against patient-derived viruses from HIV-1 clades A, B, and C, and most retained potency against drug-resistant viruses. Further optimization of these compounds using structure-based design may lead to the development of novel protease inhibitors with improved activity against drug-resistant strains of HIV-1.

摘要

设计并合成了一系列带有羟乙胺核心和不同苯恶唑烷酮 P2 配体的新型 HIV-1 蛋白酶抑制剂。P2 和 P2' 部位苯取代基的变化显著影响抑制剂的结合亲和力和抗病毒活性。一般来说,P2 位带有 2-和 4-取代苯恶唑烷酮的化合物比 3-取代类似物具有更低的结合亲和力。配体-酶复合物的晶体结构分析揭示了蛋白酶 S2 结合口袋中 2-和 3-取代 P2 部分的不同结合模式,这可能解释了它们不同的结合亲和力。一些具有 3-取代 P2 部分的化合物对来自 HIV-1 亚型 A、B 和 C 的患者源性病毒具有皮摩尔级别的结合亲和力和低纳摩尔级别的抗病毒活性,并且大多数对耐药病毒仍保持活性。使用基于结构的设计对这些化合物进行进一步优化可能会导致开发出针对 HIV-1 耐药株具有改善活性的新型蛋白酶抑制剂。

相似文献

4
HIV-1 Protease Inhibitors Incorporating Stereochemically Defined P2' Ligands To Optimize Hydrogen Bonding in the Substrate Envelope.
J Med Chem. 2019 Sep 12;62(17):8062-8079. doi: 10.1021/acs.jmedchem.9b00838. Epub 2019 Aug 21.
6
7
Design and synthesis of potent HIV-1 protease inhibitors incorporating hydroxyprolinamides as novel P2 ligands.
Bioorg Med Chem Lett. 2011 Jun 15;21(12):3730-3. doi: 10.1016/j.bmcl.2011.04.070. Epub 2011 Apr 24.
8
Disubstituted Bis-THF Moieties as New P2 Ligands in Nonpeptidal HIV-1 Protease Inhibitors (II).
J Med Chem. 2015 May 14;58(9):4029-38. doi: 10.1021/acs.jmedchem.5b00358. Epub 2015 Apr 30.
9
Design, synthesis and biological evaluation of novel HIV-1 protease inhibitors with pentacyclic triterpenoids as P2-ligands.
Bioorg Med Chem Lett. 2019 Feb 1;29(3):357-361. doi: 10.1016/j.bmcl.2018.12.040. Epub 2018 Dec 18.

引用本文的文献

2
Drug discovery in the era of cryo-electron microscopy.
Trends Biochem Sci. 2022 Feb;47(2):124-135. doi: 10.1016/j.tibs.2021.06.008. Epub 2021 Jul 16.
3
Single-Agent and Fixed-Dose Combination HIV-1 Protease Inhibitor Drugs in Fission Yeast ().
Pathogens. 2021 Jun 24;10(7):804. doi: 10.3390/pathogens10070804.
4
Benzothiazoles as potential antiviral agents.
J Pharm Pharmacol. 2020 Nov;72(11):1459-1480. doi: 10.1111/jphp.13331. Epub 2020 Jul 24.
5
Classification of HIV-1 Protease Inhibitors by Machine Learning Methods.
ACS Omega. 2018 Nov 30;3(11):15837-15849. doi: 10.1021/acsomega.8b01843. Epub 2018 Nov 21.
6
Pharmaceutical and medicinal significance of sulfur (S)-Containing motifs for drug discovery: A critical review.
Eur J Med Chem. 2019 Jan 15;162:679-734. doi: 10.1016/j.ejmech.2018.11.017. Epub 2018 Nov 22.
7
Interdependence of Inhibitor Recognition in HIV-1 Protease.
J Chem Theory Comput. 2017 May 9;13(5):2300-2309. doi: 10.1021/acs.jctc.6b01262. Epub 2017 Apr 11.
8
Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS.
J Med Chem. 2016 Jun 9;59(11):5172-208. doi: 10.1021/acs.jmedchem.5b01697. Epub 2016 Jan 22.
9
Measuring the shapes of macromolecules - and why it matters.
Comput Struct Biotechnol J. 2013 Dec 9;8:e201309001. doi: 10.5936/csbj.201309001. eCollection 2013.
10
SAR and Lead Optimization of an HIV-1 Vif-APOBEC3G Axis Inhibitor.
ACS Med Chem Lett. 2012 Jun 14;3(6):465-469. doi: 10.1021/ml300037k.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A medicinal chemist's guide to molecular interactions.
J Med Chem. 2010 Jul 22;53(14):5061-84. doi: 10.1021/jm100112j.
4
Current status and challenges of antiretroviral research and therapy.
Antiviral Res. 2010 Jan;85(1):25-33. doi: 10.1016/j.antiviral.2009.10.007. Epub 2009 Dec 16.
5
Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go?
J Med Chem. 2010 Jan 28;53(2):521-38. doi: 10.1021/jm900492g.
6
Do enthalpy and entropy distinguish first in class from best in class?
Drug Discov Today. 2008 Oct;13(19-20):869-74. doi: 10.1016/j.drudis.2008.07.005. Epub 2008 Aug 26.
9
HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants.
J Am Chem Soc. 2008 May 14;130(19):6099-113. doi: 10.1021/ja076558p. Epub 2008 Apr 16.
10
Resistance profile of darunavir: combined 24-week results from the POWER trials.
AIDS Res Hum Retroviruses. 2008 Mar;24(3):379-88. doi: 10.1089/aid.2007.0173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验