Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Nat Chem. 2010 Nov;2(11):944-8. doi: 10.1038/nchem.834. Epub 2010 Sep 12.
Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.
金属-有机骨架材料是由金属离子和有机桥联配体构成的多孔杂化材料,最近在许多领域得到了广泛应用。由于有大量的结构单元可以选择,因此金属-有机骨架材料的结构和孔特性可以相对容易地进行调整。然而,尽管进行了大量的研究,但仍然难以制备专门针对特定应用的骨架材料。在这里,我们利用计算模拟的方法设计和预测了一种具有高比表面积的金属-有机骨架材料(NU-100)。随后的实验合成得到了与计算结构相匹配的材料,具有高 BET 比表面积(6143 m2 g-1)。此外,吸附测量表明,该材料对氢气(164 mg g-1)和二氧化碳(2315 mg g-1)具有高储存容量,这两种气体在清洁能源和气候变化方面都具有重要意义,与模拟预测结果非常吻合。