Suppr超能文献

银纳米颗粒嵌入钛中通过微电偶效应控制的生物学作用。

Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects.

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.

出版信息

Biomaterials. 2011 Jan;32(3):693-705. doi: 10.1016/j.biomaterials.2010.09.066. Epub 2010 Oct 20.

Abstract

Titanium embedded with silver nanoparticles (Ag NPs) using a single step silver plasma immersion ion implantation (Ag-PIII) demonstrate micro-galvanic effects that give rise to both controlled antibacterial activity and excellent compatibility with osteoblasts. Scanning electron microscopy (SEM) shows that nanoparticles with average sizes of about 5 nm and 8 nm are formed homogeneously on the titanium surface after undergoing Ag-PIII for 0.5 h and 1 h, respectively. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) indicate that those nanoparticles are metallic silver produced on and underneath the titanium surface via a local nucleation process from the solid solution of α-Ti(Ag). The Ag-PIII samples inhibit the growth of both Staphylococcus aureus and Escherichia coli while enhancing proliferation of the osteoblast-like cell line MG63. Electrochemical polarization and Zeta potential measurements demonstrate that the low surface toxicity and good cytocompatibility are related to the micro-galvanic effect between the Ag NPs and titanium matrix. Our results show that the physico-chemical properties of the Ag NPs are important in the control of the cytotoxicity and this study opens a new window for the design of nanostructured surfaces on which the biological actions of the Ag NPs can be accurately tailored.

摘要

采用一步法银等离子体浸没离子注入(Ag-PIII)将银纳米粒子(Ag NPs)嵌入钛中,表现出微电偶效应,从而具有良好的控制抗菌活性和与成骨细胞的优异相容性。扫描电子显微镜(SEM)显示,在经过 0.5 h 和 1 h 的 Ag-PIII 处理后,分别在钛表面上形成了平均粒径约为 5nm 和 8nm 的纳米粒子。透射电子显微镜(TEM)和 X 射线光电子能谱(XPS)表明,这些纳米粒子是通过从 α-Ti(Ag) 的固溶体在钛表面上和下方的局部成核过程产生的金属银。Ag-PIII 样品抑制金黄色葡萄球菌和大肠杆菌的生长,同时增强成骨样细胞系 MG63 的增殖。电化学极化和 Zeta 电位测量表明,低表面毒性和良好的细胞相容性与 Ag NPs 和钛基体之间的微电偶效应有关。我们的结果表明,Ag NPs 的物理化学性质对细胞毒性的控制很重要,本研究为设计能够精确调整 Ag NPs 生物学作用的纳米结构表面开辟了新的窗口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验