State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
Acta Biomater. 2013 Feb;9(2):5100-10. doi: 10.1016/j.actbio.2012.10.017. Epub 2012 Oct 17.
Size tunable silver nanoparticles (Ag NPs) are synthesized and incorporated into titanium oxide coatings (TOCs) by manipulating the atomic-scale heating effect of silver plasma immersion ion implantation (Ag PIII). The resulting Ag NPs/TOC composite coatings possess electron storage capability that gives rise to both controlled antibacterial activity and excellent compatibility with mammalian cells. The precipitation behavior of these Ag NPs is qualitatively constrained by the classical nucleation theory. Both photoluminescence (PL) spectra and fluorescence microscopy results demonstrate that larger Ag NPs (5-25 nm) are better at reserving electrons than smaller ones (∼4 nm). The antibacterial activities of the as-sprayed and Ag PIII treated TOCs show that Ag NPs with a different size act distinctively to bacteria: large particles induce serious cytosolic content leakage and lysis of both Staphylococcus aureus and Escherichia coli cells while small ones do not. The excellent activity of larger Ag NPs against bacteria is highly related to their stronger electron storage capability, which can induce accumulation of adequate valence-band holes (h⁺) at the titanium oxide side, arousing oxidation reactions to bacterial cells in the dark. Moreover, the in vitro cell culture assay (using both MG63 and MC3T3 cells) reveals no significant cytotoxicity and even good cytocompatibility on the Ag PIII treated samples. Our results show that, by taking advantage of the boundary property between Ag NP and titanium oxide, the antibacterial activity of Ag NPs can be accurately controlled. This study provides a distinct criterion for the design of nanostructured surfaces such that their osteoblast functions and antibacterial activity are perfectly balanced.
通过操纵银等离子体浸没离子注入(Ag PIII)的原子级加热效应,合成了尺寸可调的银纳米颗粒(Ag NPs)并将其掺入到氧化钛涂层(TOCs)中。所得的 Ag NPs/TOC 复合涂层具有电子存储能力,从而具有控制的抗菌活性和与哺乳动物细胞的优异相容性。这些 Ag NPs 的沉淀行为通过经典成核理论进行定性约束。光致发光(PL)光谱和荧光显微镜结果均表明,较大的 Ag NPs(5-25nm)比较小的 Ag NPs(约 4nm)更能保留电子。喷涂和 Ag PIII 处理的 TOC 的抗菌活性表明,具有不同尺寸的 Ag NPs 对细菌的作用明显不同:大颗粒会导致金黄色葡萄球菌和大肠杆菌细胞的细胞质内容物严重渗漏和裂解,而小颗粒则不会。较大的 Ag NPs 对细菌的出色活性与其更强的电子存储能力密切相关,这可以在氧化钛侧诱导足够的价带空穴(h⁺)积累,从而在黑暗中引起氧化反应,杀死细菌细胞。此外,体外细胞培养实验(使用 MG63 和 MC3T3 细胞)表明,Ag PIII 处理的样品几乎没有细胞毒性,甚至具有良好的细胞相容性。我们的结果表明,通过利用 Ag NP 和氧化钛之间的边界性质,可以精确控制 Ag NPs 的抗菌活性。这项研究为设计纳米结构表面提供了明确的标准,使其成骨细胞功能和抗菌活性达到完美平衡。