Signals, Identification, System Theory and Automation, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven-Heverlee, Belgium.
Bioinformatics. 2011 Jan 1;27(1):118-26. doi: 10.1093/bioinformatics/btq569. Epub 2010 Oct 26.
We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically.
Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix.
The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html.
我们提出了一种新的算法,用于对多个核和拉普拉斯矩阵进行聚类分析。新算法基于瑞利商目标函数,并通过两级交替最小化过程进行求解。使用所提出的算法,可以自动优化核和拉普拉斯矩阵的系数。
提出了三种算法变体。在两个真实的数据融合应用程序中对算法的性能进行了系统验证。所提出的优化核拉普拉斯聚类(OKLC)算法的性能明显优于其他方法。此外,由 OKLC 优化的核和拉普拉斯系数与单个数据源的性能排名之间存在一定的相关性。尽管在我们的评估中 K 值是预先定义的,但在实际研究中,可以通过组合核拉普拉斯矩阵的特征谱一致地估计最佳聚类数。
本文中实现的算法的 MATLAB 代码可从 http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html 下载。