Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
DNA Repair (Amst). 2010 Dec 10;9(12):1299-306. doi: 10.1016/j.dnarep.2010.10.001. Epub 2010 Oct 28.
Repair and integrity of DNA ends at breaks, replication forks and telomeres are essential for life; yet, paradoxically, these responses are, in many cases, controlled by a single protein complex, Mre11-Rad50-Nbs1 (MRN). The MRN complex consists of dimers of each subunit and this heterohexamer controls key sensing, signaling, regulation, and effector responses to DNA double-strand breaks including ATM activation, homologous recombinational repair, microhomology-mediated end joining and, in some organisms, non-homologous end joining. We propose that this is possible because each MRN subunit can exist in three or more distinct states; thus, the trimer of MRN dimers can exist in a stunning 6(3) or 216 states, a number that can be expanded further when post-translational modifications are taken into account. MRN can therefore be considered as a molecular computer that effectively assesses optimal responses and pathway choice based upon its states as set by cell status and the nature of the DNA damage. This extreme multi-state concept demands a paradigm shift from striving to understand DNA damage responses in separate terms of signaling, checkpoint, and effector proteins: we must now endeavor to characterize conformational and assembly states of MRN and other DNA repair machines that couple, coordinate, and control biological outcomes. Addressing the emerging challenge of gaining a detailed molecular understanding of MRN and other multi-state dynamic DNA repair machines promises to provide opportunities to develop master keys for controlling cell biology with probable impacts on therapeutic interventions.
DNA 末端在断裂、复制叉和端粒处的修复和完整性对于生命是必不可少的;然而,矛盾的是,这些反应在许多情况下是由单个蛋白质复合物 Mre11-Rad50-Nbs1 (MRN) 控制的。MRN 复合物由每个亚基的二聚体组成,这种异六聚体控制着对 DNA 双链断裂的关键感应、信号转导、调节和效应器反应,包括 ATM 激活、同源重组修复、微同源介导的末端连接,以及在某些生物体中非同源末端连接。我们提出,这是可能的,因为每个 MRN 亚基可以存在于三种或更多种不同的状态;因此,MRN 二聚体的三聚体可以存在于令人惊叹的 6(3)或 216 种状态中,当考虑到翻译后修饰时,这个数字可以进一步扩展。因此,MRN 可以被视为一种分子计算机,它可以根据细胞状态和 DNA 损伤的性质,有效地评估最佳反应和途径选择。这种极端的多态性概念要求我们从单独的信号转导、检查点和效应蛋白的角度来理解 DNA 损伤反应的范式转变:我们现在必须努力描述 MRN 和其他 DNA 修复机器的构象和组装状态,这些机器可以耦联、协调和控制生物学结果。解决获得对 MRN 和其他多态性动态 DNA 修复机器的详细分子理解的新兴挑战,有望为开发控制细胞生物学的万能钥匙提供机会,可能对治疗干预产生影响。