Mi Xiaojuan, Eskridge Kent, Wang Dong, Baenziger P Stephen, Campbell B Todd, Gill Kulvinder S, Dweikat Ismail, Bovaird James
University of Nebraska-Lincoln, USA.
Stat Appl Genet Mol Biol. 2010;9:Article38. doi: 10.2202/1544-6115.1552. Epub 2010 Oct 19.
Quantitative trait loci (QTL) mapping often results in data on a number of traits that have well-established causal relationships. Many multi-trait QTL mapping methods that account for the correlation among multiple traits have been developed to improve the statistical power and the precision of QTL parameter estimation. However, none of these methods are capable of incorporating the causal structure among the traits. Consequently, genetic functions of the QTL may not be fully understood. Structural equation modeling (SEM) allows researchers to explicitly characterize the causal structure among the variables and to decompose effects into direct, indirect, and total effects. In this paper, we developed a multi-trait SEM method of QTL mapping that takes into account the causal relationships among traits related to grain yield. Performance of the proposed method is evaluated by simulation study and applied to data from a wheat experiment. Compared with single trait analysis and the multi-trait least-squares analysis, our multi-trait SEM improves statistical power of QTL detection and provides important insight into how QTLs regulate traits by investigating the direct, indirect, and total QTL effects. The approach also helps build biological models that more realistically reflect the complex relationships among QTL and traits and is more precise and efficient in QTL mapping than single trait analysis.
数量性状基因座(QTL)定位通常会产生一些具有明确因果关系的性状数据。为了提高统计功效和QTL参数估计的精度,人们已经开发了许多考虑多个性状之间相关性的多性状QTL定位方法。然而,这些方法都无法纳入性状之间的因果结构。因此,可能无法完全理解QTL的遗传功能。结构方程模型(SEM)使研究人员能够明确描述变量之间的因果结构,并将效应分解为直接效应、间接效应和总效应。在本文中,我们开发了一种多性状SEM QTL定位方法,该方法考虑了与籽粒产量相关的性状之间的因果关系。通过模拟研究评估了所提出方法的性能,并将其应用于小麦实验的数据。与单性状分析和多性状最小二乘分析相比,我们的多性状SEM提高了QTL检测的统计功效,并通过研究直接、间接和总QTL效应,为QTL如何调控性状提供了重要见解。该方法还有助于构建更真实反映QTL与性状之间复杂关系的生物学模型,并且在QTL定位方面比单性状分析更精确、更有效。