Suppr超能文献

通道开放时沿渗透途径的电压分布。

Voltage profile along the permeation pathway of an open channel.

机构信息

Molecular Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Biophys J. 2010 Nov 3;99(9):2863-9. doi: 10.1016/j.bpj.2010.08.053.

Abstract

For ion channels, the transmembrane potential plays a critical role by acting as a driving force for permeant ions. At the microscopic level, the transmembrane potential is thought to decay nonlinearly across the ion permeation pathway because of the irregular three-dimensional shape of the channel's pore. By taking advantage of the current structural and functional understanding of cyclic nucleotide-gated channels, in this study we experimentally explore the transmembrane potential's distribution across the open pore. As a readout for the voltage drop, we engineered cysteine residues along the selectivity filter and scanned the sensitivity of their modification rates by Ag(+) to the transmembrane potential. The experimental data, which indicate that the majority of the electric field drops across the selectivity filter, are in good agreement with continuum electrostatic calculations using a homology model of an open CNG channel. By focusing the transmembrane potential across the selectivity filter, the electromotive driving force is coupled with the movement of permeant ions in the filter, maximizing the efficiency of this process.

摘要

对于离子通道,跨膜电位起着关键作用,它作为可渗透离子的驱动力。在微观水平上,由于通道孔的不规则三维形状,跨膜电位被认为在离子渗透途径中呈非线性衰减。本研究利用对环核苷酸门控通道的当前结构和功能的理解,实验性地探索了跨膜电位在开放孔中的分布。作为电压降的读出,我们沿着选择性过滤器设计了半胱氨酸残基,并通过 Ag(+)扫描其修饰速率对跨膜电位的敏感性。实验数据表明,大部分电场降落在选择性过滤器上,与使用开放 CNG 通道同源模型进行的连续静电计算吻合良好。通过将跨膜电位集中在选择性过滤器上,电动驱动力与过滤器中可渗透离子的运动相耦合,从而最大限度地提高该过程的效率。

相似文献

1
Voltage profile along the permeation pathway of an open channel.
Biophys J. 2010 Nov 3;99(9):2863-9. doi: 10.1016/j.bpj.2010.08.053.
2
The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels.
Biophys J. 2000 Nov;79(5):2475-93. doi: 10.1016/S0006-3495(00)76490-3.
3
A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3619-28. doi: 10.1073/pnas.1503334112. Epub 2015 Jun 22.
4
Gating at the selectivity filter in cyclic nucleotide-gated channels.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3310-4. doi: 10.1073/pnas.0709809105. Epub 2008 Feb 20.
5
Mutations reveal voltage gating of CNGA1 channels in saturating cGMP.
J Gen Physiol. 2009 Aug;134(2):151-64. doi: 10.1085/jgp.200910240.
6
Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels.
Biophys J. 1998 Aug;75(2):825-33. doi: 10.1016/s0006-3495(98)77571-x.
8
Structural basis of ion permeation gating in Slo2.1 K+ channels.
J Gen Physiol. 2013 Nov;142(5):523-42. doi: 10.1085/jgp.201311064.
9
A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions.
J Physiol. 2012 Oct 15;590(20):5075-90. doi: 10.1113/jphysiol.2012.238352. Epub 2012 Aug 6.

引用本文的文献

2
Selectivity filter ion binding affinity determines inactivation in a potassium channel.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29968-29978. doi: 10.1073/pnas.2009624117. Epub 2020 Nov 5.
3
The ion selectivity filter is not an activation gate in TRPV1-3 channels.
Elife. 2019 Nov 14;8:e51212. doi: 10.7554/eLife.51212.
4
Queueing arrival and release mechanism for K permeation through a potassium channel.
J Physiol Sci. 2019 Nov;69(6):919-930. doi: 10.1007/s12576-019-00706-4. Epub 2019 Aug 27.
5
A small viral potassium ion channel with an inherent inward rectification.
Channels (Austin). 2019 Dec;13(1):124-135. doi: 10.1080/19336950.2019.1605813.
7
Ion-triggered selectivity in bacterial sodium channels.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5450-5455. doi: 10.1073/pnas.1722516115. Epub 2018 May 7.
8
Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM.
Nature. 2017 Dec 21;552(7685):421-425. doi: 10.1038/nature24652. Epub 2017 Dec 13.
10
Pore size matters for potassium channel conductance.
J Gen Physiol. 2016 Oct;148(4):277-91. doi: 10.1085/jgp.201611625. Epub 2016 Sep 12.

本文引用的文献

1
Intrinsic versus extrinsic voltage sensitivity of blocker interaction with an ion channel pore.
J Gen Physiol. 2010 Feb;135(2):149-67. doi: 10.1085/jgp.200910324.
2
Physical determinants of strong voltage sensitivity of K(+) channel block.
Nat Struct Mol Biol. 2009 Dec;16(12):1252-8. doi: 10.1038/nsmb.1717. Epub 2009 Nov 15.
3
High-resolution structure of the open NaK channel.
Nat Struct Mol Biol. 2009 Jan;16(1):30-4. doi: 10.1038/nsmb.1531. Epub 2008 Dec 21.
4
Gating at the selectivity filter in cyclic nucleotide-gated channels.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3310-4. doi: 10.1073/pnas.0709809105. Epub 2008 Feb 20.
7
Atomic structure of a Na+- and K+-conducting channel.
Nature. 2006 Mar 23;440(7083):570-4. doi: 10.1038/nature04508. Epub 2006 Feb 8.
8
Electrostatics of the intracellular vestibule of K+ channels.
J Mol Biol. 2005 Nov 25;354(2):272-88. doi: 10.1016/j.jmb.2005.09.031. Epub 2005 Sep 30.
10
Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues.
J Gen Physiol. 2005 May;125(5):493-503. doi: 10.1085/jgp.200409175. Epub 2005 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验