Department of Internal Medicine, Hennepin County Medical Center and University of Minnesota School of Medicine, Minneapolis, MN, USA.
Semin Nephrol. 2010 Sep;30(5):500-11. doi: 10.1016/j.semnephrol.2010.07.007.
Phenotypic expression of renal diseases encompasses a complex interaction between genetic, environmental, and local tissue factors. The level of complexity requires integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate metabolites from biological samples. The small molecules represent the end result of complexity of biological processes in a given cell, tissue, or organ, and thus form attractive candidates to understand disease phenotypes. Metabolites represent a diverse group of low-molecular-weight structures including lipids, amino acids, peptides, nucleic acids, and organic acids, which makes comprehensive analysis a difficult analytical challenge. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled separation, characterization, detection, and quantification of such chemically diverse structures. Continued development of bioinformatics and analytical strategies will accelerate widespread use and integration of metabolomics into systems biology. Here, we will discuss analytical and bioinformatic techniques and highlight recent studies that use metabolomics in understanding pathophysiology of disease processes.
肾脏疾病的表型表达包含遗传、环境和局部组织因素之间的复杂相互作用。这种复杂性的程度需要综合理解基因、蛋白质和代谢物网络中的扰动。代谢组学试图从生物样本中系统地鉴定和定量代谢物。小分子代表了特定细胞、组织或器官中生物过程复杂性的最终结果,因此成为了解疾病表型的有吸引力的候选物。代谢物代表了一组多样化的低分子量结构,包括脂质、氨基酸、肽、核酸和有机酸,这使得全面分析成为一项具有挑战性的分析难题。基于质谱和核磁共振的各种分析平台的快速发展,使这些化学多样性结构的分离、鉴定、检测和定量成为可能。生物信息学和分析策略的持续发展将加速代谢组学在系统生物学中的广泛应用和整合。在这里,我们将讨论分析和生物信息学技术,并重点介绍最近使用代谢组学来理解疾病过程病理生理学的研究。