Suppr超能文献

脉冲神经网络模拟:内存优化的突触事件调度

Spiking neural network simulation: memory-optimal synaptic event scheduling.

作者信息

Stewart Robert D, Gurney Kevin N

机构信息

Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK.

出版信息

J Comput Neurosci. 2011 Jun;30(3):721-8. doi: 10.1007/s10827-010-0288-6. Epub 2010 Nov 3.

Abstract

Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.

摘要

包含可变传输延迟的脉冲神经网络模拟要求在传递之前安排突触事件。传统方法的内存需求与网络中突触的总数成比例。我们针对离散和连续事件传递引入了新颖的调度算法,其中内存需求与神经元的数量成比例。通过大规模的基准网络模拟证明了卓越的算法性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验