Suppr超能文献

脉冲神经网络模拟:内存优化的突触事件调度

Spiking neural network simulation: memory-optimal synaptic event scheduling.

作者信息

Stewart Robert D, Gurney Kevin N

机构信息

Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK.

出版信息

J Comput Neurosci. 2011 Jun;30(3):721-8. doi: 10.1007/s10827-010-0288-6. Epub 2010 Nov 3.

Abstract

Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.

摘要

包含可变传输延迟的脉冲神经网络模拟要求在传递之前安排突触事件。传统方法的内存需求与网络中突触的总数成比例。我们针对离散和连续事件传递引入了新颖的调度算法,其中内存需求与神经元的数量成比例。通过大规模的基准网络模拟证明了卓越的算法性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验