Suppr超能文献

计算疫苗学工作流程的概念与应用

Concept and application of a computational vaccinology workflow.

作者信息

Söllner Johannes, Heinzel Andreas, Summer Georg, Fechete Raul, Stipkovits Laszlo, Szathmary Susan, Mayer Bernd

机构信息

emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria.

出版信息

Immunome Res. 2010 Nov 3;6 Suppl 2(Suppl 2):S7. doi: 10.1186/1745-7580-6-S2-S7.

Abstract

BACKGROUND

The last years have seen a renaissance of the vaccine area, driven by clinical needs in infectious diseases but also chronic diseases such as cancer and autoimmune disorders. Equally important are technological improvements involving nano-scale delivery platforms as well as third generation adjuvants. In parallel immunoinformatics routines have reached essential maturity for supporting central aspects in vaccinology going beyond prediction of antigenic determinants. On this basis computational vaccinology has emerged as a discipline aimed at ab-initio rational vaccine design.Here we present a computational workflow for implementing computational vaccinology covering aspects from vaccine target identification to functional characterization and epitope selection supported by a Systems Biology assessment of central aspects in host-pathogen interaction. We exemplify the procedures for Epstein Barr Virus (EBV), a clinically relevant pathogen causing chronic infection and suspected of triggering malignancies and autoimmune disorders.

RESULTS

We introduce pBone/pView as a computational workflow supporting design and execution of immunoinformatics workflow modules, additionally involving aspects of results visualization, knowledge sharing and re-use. Specific elements of the workflow involve identification of vaccine targets in the realm of a Systems Biology assessment of host-pathogen interaction for identifying functionally relevant targets, as well as various methodologies for delineating B- and T-cell epitopes with particular emphasis on broad coverage of viral isolates as well as MHC alleles.Applying the workflow on EBV specifically proposes sequences from the viral proteins LMP2, EBNA2 and BALF4 as vaccine targets holding specific B- and T-cell epitopes promising broad strain and allele coverage.

CONCLUSION

Based on advancements in the experimental assessment of genomes, transcriptomes and proteomes for both, pathogen and (human) host, the fundaments for rational design of vaccines have been laid out. In parallel, immunoinformatics modules have been designed and successfully applied for supporting specific aspects in vaccine design. Joining these advancements, further complemented by novel vaccine formulation and delivery aspects, have paved the way for implementing computational vaccinology for rational vaccine design tackling presently unmet vaccine challenges.

摘要

背景

在过去几年中,疫苗领域迎来了复兴,这不仅受到传染病临床需求的推动,也受到癌症和自身免疫性疾病等慢性病临床需求的推动。同样重要的是涉及纳米级递送平台以及第三代佐剂的技术改进。与此同时,免疫信息学程序已基本成熟,能够支持疫苗学的核心方面,而不仅仅是对抗原决定簇的预测。在此基础上,计算疫苗学作为一门旨在从头开始进行合理疫苗设计的学科应运而生。在此,我们展示了一种用于实施计算疫苗学的计算工作流程,该流程涵盖了从疫苗靶点识别到功能表征以及表位选择等方面,并得到了宿主 - 病原体相互作用核心方面的系统生物学评估的支持。我们以爱泼斯坦 - 巴尔病毒(EBV)为例来说明这些程序,EBV是一种临床相关病原体,可引起慢性感染,并被怀疑引发恶性肿瘤和自身免疫性疾病。

结果

我们引入pBone/pView作为一种计算工作流程,支持免疫信息学工作流程模块的设计和执行,此外还涉及结果可视化、知识共享和再利用等方面。该工作流程的具体要素包括在宿主 - 病原体相互作用的系统生物学评估领域中识别疫苗靶点,以确定功能相关靶点,以及各种描绘B细胞和T细胞表位的方法,特别强调对病毒分离株以及MHC等位基因的广泛覆盖。将该工作流程应用于EBV,具体提出病毒蛋白LMP2、EBNA2和BALF4的序列作为疫苗靶点,这些靶点具有特定的B细胞和T细胞表位,有望实现广泛的毒株和等位基因覆盖。

结论

基于病原体和(人类)宿主的基因组、转录组和蛋白质组实验评估的进展,已经奠定了合理设计疫苗的基础。与此同时,免疫信息学模块已被设计并成功应用于支持疫苗设计的特定方面。结合这些进展,并辅之以新型疫苗配方和递送方面的进展,为实施计算疫苗学以合理设计疫苗铺平了道路,从而应对目前尚未满足的疫苗挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa49/2981879/58e7b559d186/1745-7580-6-S2-S7-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验