Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan.
PLoS One. 2018 Aug 22;13(8):e0202537. doi: 10.1371/journal.pone.0202537. eCollection 2018.
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
EB 病毒(EBV),也称为人类疱疹病毒 4 型,在所有人类群体中普遍存在。EBV 主要感染人类 B 淋巴细胞和上皮细胞,因此与它们的各种恶性肿瘤有关。为了揭示感染过程中的细胞机制,我们构建了种间网络,以研究 EBV 感染的第一(0-24 小时)和第二(8-72 小时)阶段中人类 B 细胞与 EBV 之间的分子串扰机制。我们首先通过大数据挖掘构建了候选全基因组种间遗传和表观遗传网络(候选 GIGEN)。然后,我们通过动态相互作用模型、系统识别方法和系统阶次检测方法,使用相应的下一代测序数据,在裂解期的感染第一和第二阶段,从候选 GIGEN 中剔除假阳性,获得真实的 GIGEN。真实的 GIGEN 非常复杂,包括蛋白质-蛋白质相互作用网络、基因/微 RNA(miRNA)/长非编码 RNA 调控网络以及宿主-病毒相互作用网络。为了了解 EBV 感染的分子串扰机制,我们使用主网络投影方法从真实的 GIGEN 中提取包括宿主-病毒核心网络和宿主-病毒核心途径的核心 GIGEN。根据结果,我们发现,表观遗传相关人类蛋白或基因的活性最初被病毒蛋白和 miRNA 抑制,随后人类免疫反应被表观遗传修饰失调。我们认为,EBV 利用病毒蛋白和 miRNA,如 EBNA1、BPLF1、BALF3、BVRF1 和 miR-BART14,来开发其防御机制,以抵御人类免疫系统的多次免疫攻击,促进病毒粒子的产生,并通过激活人类基因 NRP1 和 CLIC5 促进病毒粒子的运输。最终,我们提出了一种治疗干预措施,包括胸腺醌、丙戊酸和 zebularine,作为 EBV 相关恶性肿瘤的抑制剂。