Suppr超能文献

肌纤维相关卫星细胞移植预防肌肉衰老。

Prevention of muscle aging by myofiber-associated satellite cell transplantation.

机构信息

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

出版信息

Sci Transl Med. 2010 Nov 10;2(57):57ra83. doi: 10.1126/scitranslmed.3001081.

Abstract

Skeletal muscle is dynamic, adapting to environmental needs, continuously maintained, and capable of extensive regeneration. These hallmarks diminish with age, resulting in a loss of muscle mass, reduced regenerative capacity, and decreased functionality. Although the mechanisms responsible for this decline are unclear, complex changes within the local and systemic environment that lead to a reduction in regenerative capacity of skeletal muscle stem cells, termed satellite cells, are believed to be responsible. We demonstrate that engraftment of myofiber-associated satellite cells, coupled with an induced muscle injury, markedly alters the environment of young adult host muscle, eliciting a near-lifelong enhancement in muscle mass, stem cell number, and force generation. The abrogation of age-related atrophy appears to arise from an increased regenerative capacity of the donor stem cells, which expand to occupy both myonuclei in myofibers and the satellite cell niche. Further, these cells have extensive self-renewal capabilities, as demonstrated by serial transplantation. These near-lifelong, physiological changes suggest an approach for the amelioration of muscle atrophy and diminished function that arise with aging through myofiber-associated satellite cell transplantation.

摘要

骨骼肌具有动态适应性,能够根据环境需求进行不断的维护和广泛的再生。这些特征随着年龄的增长而减弱,导致肌肉质量减少、再生能力降低和功能下降。尽管导致这种衰退的机制尚不清楚,但人们认为,导致骨骼肌干细胞(称为卫星细胞)再生能力下降的局部和全身环境的复杂变化是造成这种情况的原因。我们证明,与诱导的肌肉损伤相结合的肌纤维相关卫星细胞的移植,显著改变了年轻成年宿主肌肉的环境,引发了肌肉质量、干细胞数量和力量生成的近乎终生增强。与年龄相关的萎缩的消除似乎源于供体干细胞再生能力的增强,这些细胞扩增以占据肌纤维中的肌细胞核和卫星细胞龛。此外,这些细胞具有广泛的自我更新能力,正如通过连续移植所证明的那样。这些近乎终生的生理变化表明,通过肌纤维相关卫星细胞移植来改善衰老引起的肌肉萎缩和功能减退是一种可行的方法。

相似文献

1
Prevention of muscle aging by myofiber-associated satellite cell transplantation.
Sci Transl Med. 2010 Nov 10;2(57):57ra83. doi: 10.1126/scitranslmed.3001081.
3
Stem cell aging in the skeletal muscle: The importance of communication.
Ageing Res Rev. 2022 Jan;73:101528. doi: 10.1016/j.arr.2021.101528. Epub 2021 Nov 21.
4
Stem Cell Aging in Skeletal Muscle Regeneration and Disease.
Int J Mol Sci. 2020 Mar 6;21(5):1830. doi: 10.3390/ijms21051830.
5
Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.
PLoS One. 2013 May 21;8(5):e63528. doi: 10.1371/journal.pone.0063528. Print 2013.
6
Transplantation of Skeletal Muscle Stem Cells.
Methods Mol Biol. 2017;1556:237-244. doi: 10.1007/978-1-4939-6771-1_12.
7
Isolation, Culture, Functional Assays, and Immunofluorescence of Myofiber-Associated Satellite Cells.
Methods Mol Biol. 2016;1460:141-62. doi: 10.1007/978-1-4939-3810-0_11.
8
Regenerative decline of stem cells in sarcopenia.
Mol Aspects Med. 2016 Aug;50:109-17. doi: 10.1016/j.mam.2016.02.002. Epub 2016 Feb 24.
10
Estrogens maintain skeletal muscle and satellite cell functions.
J Endocrinol. 2016 Jun;229(3):267-75. doi: 10.1530/JOE-15-0476. Epub 2016 Apr 5.

引用本文的文献

3
Nanotopographical Cues Tune the Therapeutic Potential of Extracellular Vesicles for the Treatment of Aged Skeletal Muscle Injuries.
ACS Nano. 2023 Oct 24;17(20):19640-19651. doi: 10.1021/acsnano.3c02269. Epub 2023 Oct 5.
5
Transplantation to study satellite cell heterogeneity in skeletal muscle.
Front Cell Dev Biol. 2022 Aug 24;10:902225. doi: 10.3389/fcell.2022.902225. eCollection 2022.
6
Contribution of muscle satellite cells to sarcopenia.
Front Physiol. 2022 Aug 12;13:892749. doi: 10.3389/fphys.2022.892749. eCollection 2022.
7
The regenerating skeletal muscle niche drives satellite cell return to quiescence.
iScience. 2022 May 23;25(6):104444. doi: 10.1016/j.isci.2022.104444. eCollection 2022 Jun 17.
8
Regulatory feedback effects on tissue growth dynamics in a two-stage cell lineage model.
Phys Rev E. 2021 Sep;104(3-1):034405. doi: 10.1103/PhysRevE.104.034405.
10
Myogenic Progenitor Cell Lineage Specification by CRISPR/Cas9-Based Transcriptional Activators.
Stem Cell Reports. 2020 May 12;14(5):755-769. doi: 10.1016/j.stemcr.2020.03.026. Epub 2020 Apr 23.

本文引用的文献

1
Regulatory interactions between muscle and the immune system during muscle regeneration.
Am J Physiol Regul Integr Comp Physiol. 2010 May;298(5):R1173-87. doi: 10.1152/ajpregu.00735.2009. Epub 2010 Mar 10.
3
Skeletal muscle as a paradigm for regenerative biology and medicine.
Regen Med. 2009 Mar;4(2):293-319. doi: 10.2217/17460751.4.2.293.
5
Self-renewal and expansion of single transplanted muscle stem cells.
Nature. 2008 Nov 27;456(7221):502-6. doi: 10.1038/nature07384. Epub 2008 Sep 17.
6
A perivascular origin for mesenchymal stem cells in multiple human organs.
Cell Stem Cell. 2008 Sep 11;3(3):301-13. doi: 10.1016/j.stem.2008.07.003.
7
Long-term survival of transplanted stem cells in immunocompetent mice with muscular dystrophy.
Am J Pathol. 2008 Sep;173(3):792-802. doi: 10.2353/ajpath.2008.080259. Epub 2008 Aug 18.
8
Age-related muscle dysfunction.
Exp Gerontol. 2009 Jan-Feb;44(1-2):106-11. doi: 10.1016/j.exger.2008.05.003. Epub 2008 May 17.
9
Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles.
Cell. 2008 Jul 11;134(1):37-47. doi: 10.1016/j.cell.2008.05.049.
10
Stem cell review series: aging of the skeletal muscle stem cell niche.
Aging Cell. 2008 Aug;7(4):590-8. doi: 10.1111/j.1474-9726.2008.00399.x. Epub 2008 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验