Suppr超能文献

从问卷和气象资料预测住宅空气交换率:北卡罗来纳州中部的模型评估。

Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

机构信息

National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

出版信息

Environ Sci Technol. 2010 Dec 15;44(24):9349-56. doi: 10.1021/es101800k. Epub 2010 Nov 11.

Abstract

A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

摘要

空气污染暴露模型的一个关键方面是估算人们大部分时间所处的单个住宅的空气交换率(AER)。AER 是建筑物内外的气流,是室外空气污染物进入和室内源排放物去除的主要机制。将机械劳伦斯伯克利国家实验室(LBL)AER 模型与泄漏面积模型相关联,以根据问卷调查和气象数据预测 AER。LBL 模型还扩展到包括自然通风(LBLX)。使用文献报道的参数值,将 LBL 和 LBLX 模型的 AER 预测值与北卡罗来纳州中部 31 个独立住宅的 642 个日常 AER 测量值的数据进行了比较,这些数据与相应的问卷调查和气象观测相对应。在四个连续季节中的每个季节,连续七天进行了数据收集。对于个体模型预测和实测 AER,LBL 和 LBLX 模型的中位数绝对差异分别为 43%(0.17 h(-1))和 40%(0.17 h(-1))。此外,还评估了文献报道的经验规模因子(SF)AER 模型,其中位数绝对差异为 50%(0.25 h(-1))。LBL、LBLX 和 SF 模型的功能可以帮助减少用于制定健康研究暴露指标的空气污染暴露模型中的 AER 不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356d/3001757/a14f837f21e8/es-2010-01800k_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验