Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.
Biochem Pharmacol. 2011 Feb 1;81(3):432-41. doi: 10.1016/j.bcp.2010.11.002. Epub 2010 Nov 9.
Amiodarone is a class III antiarrhythmic drug with potentially life-threatening hepatotoxicity. Recent in vitro investigations suggested that the mono-N-desethyl (MDEA) and di-N-desethyl (DDEA) metabolites may cause amiodarone's hepatotoxicity. Since cytochrome P450 (CYP) 3A4 is responsible for amiodarone N-deethylation, CYP3A4 induction may represent a risk factor. Our aim was therefore to investigate the role of CYP3A4 in amiodarone-associated hepatotoxicity. First, we showed that 50μM amiodarone is more toxic to primary human hepatocytes after CYP induction with rifampicin. Second, we overexpressed human CYP3A4 in HepG2 cells (HepG2 cells/CYP3A4) for studying the interaction between CYP3A4 and amiodarone in more detail. We also used HepG2 wild type cells (HepG2 cells/wt) co-incubated with human CYP3A4 supersomes for amiodarone activation (HepG2 cells/CYP3A4 supersomes). Amiodarone (10-50μM) was cytotoxic for HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes, but not for HepG2 cells/wt or less toxic for HepG2 cells/wt incubated with control supersomes without CYP3A4. Co-incubation with ketoconazole, attenuated cytotoxicity of amiodarone incubated with HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes. MDEA and DDEA were formed only in incubations containing HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes but not by HepG2 cells/wt or HepG2 cells/wt with control supersomes. Metabolized amiodarone triggered the production of reactive oxygen species, induced mitochondrial damage and cytochrome c release, and promoted apoptosis/necrosis in HepG2 cells/CYP3A4, but not HepG2 cells/wt. This study supports the hypothesis that a high CYP3A4 activity is a risk factor for amiodarone's hepatotoxicity. Since CYP3A4 inducers are used frequently and amiodarone-associated hepatotoxicity can be fatal, our observations may be clinically relevant.
胺碘酮是一种具有潜在致命性肝毒性的 III 类抗心律失常药物。最近的体外研究表明,单-N-去乙基(MDEA)和二-N-去乙基(DDEA)代谢物可能导致胺碘酮的肝毒性。由于细胞色素 P450(CYP)3A4 负责胺碘酮的 N-去乙基化,CYP3A4 的诱导可能代表一个危险因素。因此,我们的目的是研究 CYP3A4 在胺碘酮相关肝毒性中的作用。首先,我们表明,在用利福平诱导 CYP 后,50μM 的胺碘酮对原代人肝细胞更具毒性。其次,我们在 HepG2 细胞中过表达人 CYP3A4(HepG2 细胞/CYP3A4),以更详细地研究 CYP3A4 与胺碘酮之间的相互作用。我们还使用 HepG2 野生型细胞(HepG2 细胞/wt)与人类 CYP3A4 超体共孵育,以激活胺碘酮(HepG2 细胞/CYP3A4 超体)。胺碘酮(10-50μM)对 HepG2 细胞/CYP3A4 或 HepG2 细胞/CYP3A4 超体具有细胞毒性,但对 HepG2 细胞/wt 或与不含 CYP3A4 的对照超体孵育的 HepG2 细胞/wt 的毒性较小。与酮康唑共孵育可减轻 HepG2 细胞/CYP3A4 或 HepG2 细胞/CYP3A4 超体孵育时胺碘酮的细胞毒性。MDEA 和 DDEA 仅在包含 HepG2 细胞/CYP3A4 或 HepG2 细胞/CYP3A4 超体的孵育中形成,而不是在 HepG2 细胞/wt 或 HepG2 细胞/wt 与对照超体中形成。代谢的胺碘酮触发活性氧的产生,诱导线粒体损伤和细胞色素 c 释放,并促进 HepG2 细胞/CYP3A4 中的细胞凋亡/坏死,但不促进 HepG2 细胞/wt 中的细胞凋亡/坏死。这项研究支持这样一种假设,即高 CYP3A4 活性是胺碘酮肝毒性的一个危险因素。由于 CYP3A4 诱导剂经常被使用,并且胺碘酮相关的肝毒性可能是致命的,因此我们的观察结果可能具有临床意义。