Division of Clinical Pharmacology & Toxicology and Department of Biomedicine, University Hospital, CH-4031 Basel, Switzerland.
Division of Clinical Pharmacology & Toxicology and Department of Biomedicine, University Hospital, CH-4031 Basel, Switzerland.
Free Radic Biol Med. 2013 Dec;65:208-216. doi: 10.1016/j.freeradbiomed.2013.06.007. Epub 2013 Jun 11.
Clopidogrel is a prodrug used widely as a platelet aggregation inhibitor. After intestinal absorption, approximately 90% is converted to inactive clopidogrel carboxylate and 10% via a two-step procedure to the active metabolite containing a mercapto group. Hepatotoxicity is a rare but potentially serious adverse reaction associated with clopidogrel. The aim of this study was to find out the mechanisms and susceptibility factors for clopidogrel-associated hepatotoxicity. In primary human hepatocytes, clopidogrel (10 and 100 μM) was cytotoxic only after cytochrome P450 (CYP) induction by rifampicin. Clopidogrel (10 and 100 μM) was also toxic for HepG2 cells expressing human CYP3A4 (HepG2/CYP3A4) and HepG2 cells co-incubated with CYP3A4 supersomes (HepG2/CYP3A4 supersome), but not for wild-type HepG2 cells (HepG2/wt). Clopidogrel (100 μM) decreased the cellular glutathione content in HepG2/CYP3A4 supersome and triggered an oxidative stress reaction (10 and 100 µM) in HepG2/CYP3A4, but not in HepG2/wt. Glutathione depletion significantly increased the cytotoxicity of clopidogrel (10 and 100 µM) in HepG2/CYP3A4 supersome. Co-incubation with 1 μM ketoconazole or 10mM glutathione almost completely prevented the cytotoxic effect of clopidogrel in HepG2/CYP3A4 and HepG2/CYP3A4 supersome. HepG2/CYP3A4 incubated with 100 μM clopidogrel showed mitochondrial damage and cytochrome c release, eventually promoting apoptosis and/or necrosis. In contrast to clopidogrel, clopidogrel carboxylate was not toxic for HepG2/wt or HepG2/CYP3A4 up to 100 µM. In conclusion, clopidogrel incubated with CYP3A4 is associated with the formation of metabolites that are toxic for hepatocytes and can be trapped by glutathione. High CYP3A4 activity and low cellular glutathione stores may be risk factors for clopidogrel-associated hepatocellular toxicity.
氯吡格雷是一种广泛用作血小板聚集抑制剂的前体药物。在肠道吸收后,约 90%转化为无活性的氯吡格雷羧酸,10%通过两步过程转化为含有巯基的活性代谢物。肝毒性是与氯吡格雷相关的一种罕见但潜在严重的不良反应。本研究旨在探讨氯吡格雷相关性肝毒性的机制和易感性因素。在原代人肝细胞中,氯吡格雷(10 和 100μM)仅在细胞色素 P450(CYP)被利福平诱导后才具有细胞毒性。氯吡格雷(10 和 100μM)对表达人 CYP3A4 的 HepG2 细胞(HepG2/CYP3A4)和与 CYP3A4 超合体共孵育的 HepG2 细胞(HepG2/CYP3A4 超合体)也有毒性,但对野生型 HepG2 细胞(HepG2/wt)没有毒性。氯吡格雷(100μM)降低了 HepG2/CYP3A4 超合体中的细胞内谷胱甘肽含量,并在 HepG2/CYP3A4 中引发氧化应激反应(10 和 100μM),但在 HepG2/wt 中没有。谷胱甘肽耗竭显著增加了氯吡格雷(10 和 100μM)在 HepG2/CYP3A4 超合体中的细胞毒性。与 1μM 酮康唑或 10mM 谷胱甘肽共孵育几乎完全阻止了氯吡格雷在 HepG2/CYP3A4 和 HepG2/CYP3A4 超合体中的细胞毒性作用。用 100μM 氯吡格雷孵育的 HepG2/CYP3A4 显示线粒体损伤和细胞色素 c 释放,最终促进细胞凋亡和/或坏死。与氯吡格雷不同,氯吡格雷羧酸在高达 100μM 时对 HepG2/wt 或 HepG2/CYP3A4 均无毒性。总之,与 CYP3A4 孵育的氯吡格雷与形成对肝细胞有毒的代谢物有关,这些代谢物可被谷胱甘肽捕获。高 CYP3A4 活性和低细胞内谷胱甘肽储存可能是氯吡格雷相关性肝毒性的危险因素。