Suppr超能文献

人类 T 细胞白血病病毒 1 型 p8 蛋白增加细胞通道并促进病毒传播。

Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission.

机构信息

Animal Models Retroviral Vaccine Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20738-43. doi: 10.1073/pnas.1009635107. Epub 2010 Nov 12.

Abstract

The human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia/lymphoma as well as tropical spastic paraparesis/HTLV-1-associated myelopathy. HTLV-1 is transmitted to T cells through the virological synapse and by extracellular viral assemblies. Here, we uncovered an additional mechanism of virus transmission that is regulated by the HTLV-1-encoded p8 protein. We found that the p8 protein, known to anergize T cells, is also able to increase T-cell contact through lymphocyte function-associated antigen-1 clustering. In addition, p8 augments the number and length of cellular conduits among T cells and is transferred to neighboring T cells through these conduits. p8, by establishing a T-cell network, enhances the envelope-dependent transmission of HTLV-1. Thus, the ability of p8 to simultaneously anergize and cluster T cells, together with its induction of cellular conduits, secures virus propagation while avoiding the host's immune surveillance. This work identifies p8 as a viral target for the development of therapeutic strategies that may limit the expansion of infected cells in HTLV-1 carriers and decrease HTLV-1-associated morbidity.

摘要

人类 T 细胞白血病病毒 1 型(HTLV-1)是成人 T 细胞白血病/淋巴瘤以及热带痉挛性截瘫/HTLV-1 相关脊髓病的病因。HTLV-1 通过病毒突触和细胞外病毒组装体传播到 T 细胞。在这里,我们发现了一种由 HTLV-1 编码的 p8 蛋白调节的病毒传播的额外机制。我们发现,p8 蛋白已知会使 T 细胞失能,还能够通过淋巴细胞功能相关抗原-1 聚类增加 T 细胞的接触。此外,p8 增加了 T 细胞之间的细胞管的数量和长度,并通过这些细胞管传递给相邻的 T 细胞。p8 通过建立 T 细胞网络,增强了 HTLV-1 的包膜依赖性传播。因此,p8 同时使 T 细胞失能和聚类的能力,以及其诱导的细胞管,确保了病毒的传播,同时避免了宿主的免疫监视。这项工作确定了 p8 作为治疗策略的病毒靶点,这些策略可能限制 HTLV-1 携带者中受感染细胞的扩增,并降低 HTLV-1 相关发病率。

相似文献

1
Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission.
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20738-43. doi: 10.1073/pnas.1009635107. Epub 2010 Nov 12.
2
Hijacking the T-cell communication network by the human T-cell leukemia/lymphoma virus type 1 (HTLV-1) p12 and p8 proteins.
Mol Aspects Med. 2010 Oct;31(5):333-43. doi: 10.1016/j.mam.2010.07.001. Epub 2010 Jul 29.
4
5
Transfer of HTLV-1 p8 and Gag to target T-cells depends on VASP, a novel interaction partner of p8.
PLoS Pathog. 2020 Sep 30;16(9):e1008879. doi: 10.1371/journal.ppat.1008879. eCollection 2020 Sep.
7
Role of HTLV-1 orf-I encoded proteins in viral transmission and persistence.
Retrovirology. 2019 Dec 18;16(1):43. doi: 10.1186/s12977-019-0502-1.
8
HTLV-1 infection of myeloid cells: from transmission to immune alterations.
Retrovirology. 2019 Dec 23;16(1):45. doi: 10.1186/s12977-019-0506-x.
9
Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence.
Viruses. 2011 Jun;3(6):861-85. doi: 10.3390/v3060861. Epub 2011 Jun 17.
10
Transcytosis of HTLV-1 across a tight human epithelial barrier and infection of subepithelial dendritic cells.
Blood. 2012 Jul 19;120(3):572-80. doi: 10.1182/blood-2011-08-374637. Epub 2012 May 15.

引用本文的文献

1
Direct cell-to-cell transmission of retrotransposons.
bioRxiv. 2025 Mar 16:2025.03.14.642691. doi: 10.1101/2025.03.14.642691.
3
M-Sec promotes the accumulation of intracellular HTLV-1 Gag puncta and the incorporation of Env into viral particles.
PLoS Pathog. 2025 Jan 27;21(1):e1012919. doi: 10.1371/journal.ppat.1012919. eCollection 2025 Jan.
4
A Novel Tax-Responsive Reporter T-Cell Line to Analyze Infection of HTLV-1.
Pathogens. 2024 Nov 19;13(11):1015. doi: 10.3390/pathogens13111015.
5
Intercellular Transport of Viral Proteins.
Results Probl Cell Differ. 2024;73:435-474. doi: 10.1007/978-3-031-62036-2_18.
6
Tunneling Nanotubes: The Cables for Viral Spread and Beyond.
Results Probl Cell Differ. 2024;73:375-417. doi: 10.1007/978-3-031-62036-2_16.
7
Intercellular Highways in Transport Processes.
Results Probl Cell Differ. 2024;73:173-201. doi: 10.1007/978-3-031-62036-2_9.
8
Exploiting hosts and vectors: viral strategies for facilitating transmission.
EMBO Rep. 2024 Aug;25(8):3187-3201. doi: 10.1038/s44319-024-00214-6. Epub 2024 Jul 24.
9
Complete Rescue of HTLV-1 Infectivity by Depletion of Monocytes Together with NK and CD8 T Cells.
Pathogens. 2024 Mar 29;13(4):292. doi: 10.3390/pathogens13040292.
10
Diversity of Intercellular Communication Modes: A Cancer Biology Perspective.
Cells. 2024 Mar 12;13(6):495. doi: 10.3390/cells13060495.

本文引用的文献

3
Novel role for interleukin-2 receptor-Jak signaling in retrovirus transmission.
J Virol. 2009 Nov;83(22):11467-76. doi: 10.1128/JVI.00952-09. Epub 2009 Sep 2.
5
HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse.
Blood. 2009 Jul 30;114(5):1016-25. doi: 10.1182/blood-2008-03-136770. Epub 2009 Jun 3.
6
Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses.
J Virol. 2009 Jun;83(12):6234-46. doi: 10.1128/JVI.00282-09. Epub 2009 Apr 15.
7
Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells.
FEBS Lett. 2009 May 6;583(9):1481-8. doi: 10.1016/j.febslet.2009.03.065. Epub 2009 Apr 2.
8
In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein.
Blood. 2009 Apr 16;113(16):3726-34. doi: 10.1182/blood-2008-04-146928. Epub 2008 Sep 12.
9
Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis.
Trends Cell Biol. 2008 Sep;18(9):414-20. doi: 10.1016/j.tcb.2008.07.003. Epub 2008 Aug 14.
10
Membrane nanotubes: dynamic long-distance connections between animal cells.
Nat Rev Mol Cell Biol. 2008 Jun;9(6):431-6. doi: 10.1038/nrm2399. Epub 2008 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验