Cancer and Inflammation Program, National Cancer Institute at Frederick and Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. , Frederick, Maryland 21702, United States.
Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University , Tel Aviv 69978, Israel.
J Phys Chem B. 2017 Jun 22;121(24):5917-5927. doi: 10.1021/acs.jpcb.7b03035. Epub 2017 Jun 7.
To signal, Ras isoforms must be enriched at the plasma membrane (PM). It was suggested that phosphodiesterase-δ (PDEδ) can bind and shuttle some farnesylated Ras isoforms to the PM, but not all. Among these, interest focused on K-Ras4B, the most abundant oncogenic Ras isoform. To study PDEδ/Ras interactions, we modeled and simulated the PDEδ/K-Ras4B complex. We obtained structures, which were similar to two subsequently determined crystal structures. We next modeled and simulated complexes of PDEδ with the farnesylated hypervariable regions of K-Ras4A and N-Ras. Earlier data suggested that PDEδ extracts K-Ras4B and N-Ras from the PM, but surprisingly not K-Ras4A. Earlier analysis of the crystal structures advanced that the presence of large/charged residues adjacent to the farnesylated site precludes the PDEδ interaction. Here, we show that PDEδ can bind to farnesylated K-Ras4A and N-Ras like K-Ras4B, albeit not as strongly. This weaker binding, coupled with the stronger anchoring of K-Ras4A in the membrane (but not of electrostatically neutral N-Ras), can explain the observation why PDEδ is unable to effectively extract K-Ras4A. We thus propose that farnesylated Ras isoforms can bind PDEδ to fulfill the required PM enrichment, and argue that the different environments, PM versus solution, can resolve apparently puzzling Ras observations. These are novel insights that would not be expected based on the crystal structures alone, which provide an elegant rationale for previously puzzling observations of the differential effects of PDEδ on farnesylated Ras family proteins.
为了发出信号,Ras 同工型必须在质膜(PM)中富集。有人提出,磷酸二酯酶-δ(PDEδ)可以结合并将一些法呢基化的 Ras 同工型转移到 PM,但并非全部。在这些同工型中,人们对最丰富的致癌 Ras 同工型 K-Ras4B 感兴趣。为了研究 PDEδ/Ras 相互作用,我们对 PDEδ/K-Ras4B 复合物进行了建模和模拟。我们得到的结构与随后确定的两个晶体结构相似。接下来,我们对 PDEδ 与法呢基化的 K-Ras4A 和 N-Ras 的高变区的复合物进行了建模和模拟。早期的数据表明,PDEδ 从 PM 中提取 K-Ras4B 和 N-Ras,但令人惊讶的是不提取 K-Ras4A。早期对晶体结构的分析表明,靠近法呢基化位点的大/带电荷残基的存在会阻止 PDEδ 的相互作用。在这里,我们表明,PDEδ 可以像 K-Ras4B 一样结合法呢基化的 K-Ras4A 和 N-Ras,但结合强度不如 K-Ras4B。这种较弱的结合,加上 K-Ras4A 在膜中的更强锚定(而不是静电中性的 N-Ras),可以解释为什么 PDEδ 无法有效地提取 K-Ras4A。因此,我们提出法呢基化的 Ras 同工型可以结合 PDEδ 来满足所需的 PM 富集,并认为不同的环境,即 PM 与溶液,可能会解决 Ras 观察结果中明显令人困惑的问题。这些是新的见解,单凭晶体结构是无法预料的,晶体结构为 PDEδ 对法呢基化的 Ras 家族蛋白的不同作用的先前令人困惑的观察提供了一个优雅的基本原理。