Suppr超能文献

利用电子鼻和判别分析对根管微生物进行分类。

Classification of root canal microorganisms using electronic-nose and discriminant analysis.

机构信息

Zirve University, Faculty of Engineering, Department of Electrical & Electronics Eng,, 27260 Gaziantep, Turkey.

出版信息

Biomed Eng Online. 2010 Nov 22;9:77. doi: 10.1186/1475-925X-9-77.

Abstract

BACKGROUND

Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument.

METHOD

Our microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance.

RESULTS

We have found that quadratic type discriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and feature reduction method combinations, the difference model with standard deviation based dimension reduction or normalized fractional difference model with principal component analysis based dimension reduction results in the best overall performance across different concentrations.

CONCLUSION

Our results reveal that the electronic nose technology is a promising and convenient alternative for classifying microorganisms that cause root canal infections. With our comprehensive approach, we have also determined optimal settings to obtain higher classification performance using this technology and discriminant analysis.

摘要

背景

根管治疗是一种清创过程,它破坏并清除根管系统中的所有微生物。鉴定微生物可以帮助临床医生选择不同的治疗方案,例如使用不同的冲洗液、根管内药物和抗生素。然而,由于主要厌氧菌的培养困难和分离复杂,临床医生只能采用经验性的治疗方法。出于这个原因,微生物鉴定并不是根管治疗中常规使用的程序。在本研究中,我们旨在使用电子鼻仪器收集的气味数据对经常出现在根管感染中的 7 种不同标准微生物菌株进行分类。

方法

我们的微生物气味数据集由 7 个不同类别在 4 个浓度水平下的 5 个重复样本组成。对于每个浓度,使用 3 种不同的判别分析方法对 35 个样本进行分类。为了确定在这种应用中使用电子鼻的最佳设置,我们尝试了 3 种不同的方法来评估传感器响应。此外,我们还使用了 3 种不同的传感器基线值来归一化传感器响应。由于与样本量相比,传感器数量相对较大,因此我们还研究了两种不同的降维方法对分类性能的影响。

结果

我们发现二次型判别分析优于其他类型的方法。我们还观察到,随着浓度的降低,分类性能下降。在用于预处理传感器响应的不同基线值中,接受样本中传感器读数的最小值作为基线的模型产生了更好的分类性能。与该最佳基线值选择相对应,我们注意到,在不同的传感器响应模型和特征降维方法组合中,差异模型与基于标准差的降维或基于归一化分数差模型与基于主成分分析的降维相结合,在不同浓度下均可获得最佳的整体性能。

结论

我们的结果表明,电子鼻技术是一种有前途且方便的替代方法,可用于对引起根管感染的微生物进行分类。通过我们的综合方法,我们还确定了使用该技术和判别分析获得更高分类性能的最佳设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0733/3224911/a5bebab09fa8/1475-925X-9-77-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验