Suppr超能文献

自动检测最大摄氧量和通气阈。

Automatic detection of maximal oxygen uptake and ventilatory threshold.

机构信息

Department of Electronics, Computer Sciences and Systems, University of Bologna, Via Venezia 52, 47023 Cesena, Italy.

出版信息

Comput Biol Med. 2011 Jan;41(1):18-23. doi: 10.1016/j.compbiomed.2010.11.001. Epub 2010 Nov 18.

Abstract

Maximal oxygen uptake (VO(2max)) and ventilatory threshold (VT) are the most common measurements in exercise physiology laboratories for the objective characterization of the physiologic state of metabolic and respiratory systems. Several techniques for their identification were proposed in the literature: the aim of the present study was to review them and assess their performance when applied to experimental data. In the present study, the criteria to detect VO(2max) and VT from respiratory gas-exchange data were analysed and automatic procedures for the identification of these parameters were implemented. These procedures were then applied to experimental data in order to assess the verifiability, repeatability and sensitivity to measurement noise of each proposed method. The results suggest plateau- and RISE-105- as the most reliable automatic procedures for determining VO(2max), while respiratory exchange ratio-, ventilatory equivalent for O(2)- and P(ET,O2)-criteria appear to be the most reliable automatic procedures for estimating VT.

摘要

最大摄氧量(VO₂max)和通气阈(VT)是运动生理学实验室中最常用的测量方法,用于客观描述代谢和呼吸系统的生理状态。文献中提出了几种识别它们的技术:本研究的目的是回顾这些技术,并评估它们在应用于实验数据时的性能。在本研究中,对从呼吸气体交换数据中检测 VO₂max 和 VT 的标准进行了分析,并实现了这些参数的自动识别程序。然后将这些程序应用于实验数据,以评估每种方法的验证性、可重复性和对测量噪声的敏感性。结果表明,平台法和 RISE-105 法是确定 VO₂max 的最可靠的自动程序,而呼吸交换比法、氧通气当量法和 P(ET,O₂)法似乎是估计 VT 的最可靠的自动程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验