Suppr超能文献

艾兹海默简单神经元模型的亚阈值模拟超大规模集成电路实现

A subthreshold aVLSI implementation of the Izhikevich simple neuron model.

作者信息

Rangan Venkat, Ghosh Abhishek, Aparin Vladimir, Cauwenberghs Gert

机构信息

Qualcomm Incorporated, San Diego, CA 92121, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4164-7. doi: 10.1109/IEMBS.2010.5627392.

Abstract

We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics. The low power operation and compact analog VLSI realization make the architecture suitable for human-machine interface applications in neural prostheses and implantable bioelectronics, as well as large-scale neural emulation tools for computational neuroscience.

摘要

我们提出了一种用于Izhikevich神经元模型的紧凑型模拟VLSI实现的电路架构,该模型使用两个状态变量和四个可调参数有效地描述了各种神经元的尖峰和爆发动力学。利用亚阈值MOS晶体管的对数域电路设计具有高能效,每个尖峰消耗的能量小于1皮焦耳。我们还讨论了参数变化对方程动力学的影响,并给出了复制几种神经动力学类型的仿真结果。低功耗操作和紧凑型模拟VLSI实现使该架构适用于神经假体和可植入生物电子学中的人机接口应用,以及用于计算神经科学的大规模神经仿真工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验