Rangan Venkat, Ghosh Abhishek, Aparin Vladimir, Cauwenberghs Gert
Qualcomm Incorporated, San Diego, CA 92121, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4164-7. doi: 10.1109/IEMBS.2010.5627392.
We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics. The low power operation and compact analog VLSI realization make the architecture suitable for human-machine interface applications in neural prostheses and implantable bioelectronics, as well as large-scale neural emulation tools for computational neuroscience.
我们提出了一种用于Izhikevich神经元模型的紧凑型模拟VLSI实现的电路架构,该模型使用两个状态变量和四个可调参数有效地描述了各种神经元的尖峰和爆发动力学。利用亚阈值MOS晶体管的对数域电路设计具有高能效,每个尖峰消耗的能量小于1皮焦耳。我们还讨论了参数变化对方程动力学的影响,并给出了复制几种神经动力学类型的仿真结果。低功耗操作和紧凑型模拟VLSI实现使该架构适用于神经假体和可植入生物电子学中的人机接口应用,以及用于计算神经科学的大规模神经仿真工具。